Flexural Strengthening of RC Beams with an Externally Bonded Fabric-Reinforced Cementitious Matrix

2014 ◽  
Vol 18 (5) ◽  
pp. 04014009 ◽  
Author(s):  
Saman Babaeidarabad ◽  
Giovanni Loreto ◽  
Antonio Nanni
Author(s):  
Usama Ebead ◽  
Hossameldin El-Sherif

Fibre reinforced cementitious matrix (FRCM) systems are mostly externally bonded (EB) for the strengthening of reinforced concrete (RC) and masonry structures. In this paper, the relatively new concept of near-surface embedded (NSE) FRCM, has been introduced for the flexural strengthening of beams. The process of the application of NSE-FRCM strengthening technique involves the removal of the concrete layer at beam soffit, being the most deteriorated in actual practices. Experimental evidence of the flexural strengthening efficacy of this technique is provided here. Eight RC beams were prepared and tested under four-point loading with the consideration of two test parameters: (a) FRCM material (polyparaphenylene benzobisoxazole (PBO)/carbon/ glass); and (b) the reinforcement ratio (0.5% representing flexure-deficient beams and 1.28% representing typical under-reinforced beams). The strengthening led to gains in ultimate loads that ranged between 31.4% and 84.3%.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Kyusan Jung ◽  
Kinam Hong ◽  
Sanghoon Han ◽  
Jaekyu Park ◽  
Jaehyun Kim

This paper presents both experimental and analytical research results for predicting the flexural capacity of reinforced concrete (RC) beams strengthened in flexure with fabric reinforced cementitious matrix (FRCM). In order to assess the efficiency of the FRCM-strengthening method, six beams were strengthened in flexure with FRCM composite having different amounts and layers of FRP fabric and were tested under four-point loading. From test results, it was confirmed that the slippage between the FRP fabric and matrix occurs at a high strain level, and all of the FRCM-strengthened beams failed by the debonding of the FRCM. Additionally, a new bond strength model for FRCM considering the slippage between fabric and matrix was proposed, using a test database to predict the strengthening performance of the FRCM composite. The prediction of the proposed bond strength model agreed well with the debonding loads of the test database.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Kyusan Jung ◽  
Kinam Hong ◽  
Sanghoon Han ◽  
Jaekyu Park ◽  
Jaehyun Kim

The effectiveness of a hybrid fiber reinforced polymer- (FRP-) fabric reinforced cementitious matrix (FRCM) for shear strengthening was investigated though an experimental study. FRP materials of FRCM are usually fabricated in the form of a fabric to enhance the bond strength between the FRP material and the cementitious matrix. The hybrid FRP fabric used in this study consisted of carbon FRP (CFRP) and glass FRP (GFRP) in warp and weft directions, respectively. A total of 11 beams were fabricated and 8 beams among them were strengthened in shear with externally bonded hybrid FRP-FRCM. The number of plies, the bond types, and the spacing of the hybrid FRP fabric were considered as experimental variables. Additionally, a shear capacity model for a FRCM shear strengthened beam was proposed. The values predicted by the proposed model were compared with those by the ACI 549 code and test results. It was confirmed from the comparison that the proposed model predicted the shear strengthening performance of the hybrid FRP-FRCM more reliably than the ACI 549 code did.


2015 ◽  
Vol 7 (4) ◽  
pp. 341-352 ◽  
Author(s):  
Giovanni Loreto ◽  
Saman Babaeidarabad ◽  
Lorenzo Leardini ◽  
Antonio Nanni

Sign in / Sign up

Export Citation Format

Share Document