Prediction of Long-Term Performance and Durability of BFRP Bars under the Combined Effect of Sustained Load and Corrosive Solutions

2015 ◽  
Vol 19 (3) ◽  
pp. 04014058 ◽  
Author(s):  
Gang Wu ◽  
Zhi-Qiang Dong ◽  
Xin Wang ◽  
Ying Zhu ◽  
Zhi-Shen Wu
Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2341 ◽  
Author(s):  
Jianwei Tu ◽  
Hua Xie ◽  
Kui Gao

With the continuous development of production technology, the performance of glass-fiber-reinforced polymer (GFRP) bars is also changing, and some design codes are no longer applicable to new materials based on previous research results. In this study, a series of durability tests were carried out on a new generation of GFRP bars in laboratory-simulated seawater and a concrete environment under different temperatures and sustained loads. The durability performance of GFRP bars was investigated by analysing the residual tensile properties. The degradation mechanism of GFRP bars was also analysed by scanning electronic microscopy (SEM). Furthermore, the long-term performance of GFRP bars exposed to concrete pore solution under different stress levels was predicted using Arrhenius theory. The research results show that the degradation rate of GFRP bars was increased significantly at a 40% stress level. By comparing the test results, design limits, and other scholars’ research results, it is demonstrated that the GFRP bars used in this test have a good durability performance. It is found that the main degradation mechanism of the GFRP bars is the debonding at the fiber-matrix interface. In the range test, the effects of a 20% stress level on the degradation of GFRP bars were not obvious. However, the long-term performance prediction results show that when the exposure time was long enough, the degradation processes were accelerated by a 20% stress level.


2018 ◽  
Vol 190 ◽  
pp. 20-31 ◽  
Author(s):  
Hamed Fergani ◽  
Matteo Di Benedetti ◽  
Cristina Miàs Oller ◽  
Cyril Lynsdale ◽  
Maurizio Guadagnini

2011 ◽  
Vol 255-260 ◽  
pp. 3119-3123 ◽  
Author(s):  
Jian Wei Huang

In this paper, the tensile strength retention of GFRP bars embedded in moist concrete under sustained loads is discussed on the basis of reported data. Long-term performance of GFRP bar is predicted by a newly developed model through time-temperature shift and time extrapolation approaches. Results indicated that higher temperature and longer exposure time result in more tensile strength loss of the sustained GFRP bar in moist concrete. Above certain temperature, GFRP bar in moist concrete with about 20% sustained load fails in rupture of GFRP bar for 75-year design lifetime. The temperature effect shall be taken into account in the design codes/guidelines.


Author(s):  
Carl Malings ◽  
Rebecca Tanzer ◽  
Aliaksei Hauryliuk ◽  
Provat K. Saha ◽  
Allen L. Robinson ◽  
...  

2008 ◽  
Vol 56 (S 1) ◽  
Author(s):  
CC Badiu ◽  
W Eichinger ◽  
D Ruzicka ◽  
I Hettich ◽  
S Bleiziffer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document