Shear Behavior of RC Beams with Corroded Stirrups Strengthened Using FRP Laminates: Effect of the Shear Span-to-Depth Ratio

2020 ◽  
Vol 24 (4) ◽  
pp. 04020033 ◽  
Author(s):  
Weiwen Li ◽  
Zeqi Huang ◽  
Zefeng Huang ◽  
Xu Yang ◽  
Tiansheng Shi ◽  
...  
Author(s):  
Muhammad K. Kayani ◽  
Wasim Khaliq ◽  
Muhammad K. Shehzad

Major factors contributing to the shear behavior in reinforced concrete (RC) beams have been identified as compressive strength of concrete, shear span to effective depth ratio, and longitudinal reinforcement. Though significant, few of these factors are not fully incorporated in ACI code provisions for design of minimum shear reinforcement. To investigate the effect of these parameters, an analytical and experimental study was undertaken on the shear behavior of ordinary strength RC slender beams with moderate longitudinal reinforcement. The experimental program consisted of testing of eight simply supported RC slender beams subjected to two concentrated loads at a shear span to depth ratio (a/d) of 2.5 and equipped with varying shear reinforcement according to four different criteria. Ultimate shear strengths obtained in this experimental program are compared to the analytical shear strengths calculated according to existing as well as proposed equations. Test results exhibit that, the modified equation proposed in this work gives more accurate prediction of shear capacity of RC beams.


2017 ◽  
Vol 120 ◽  
pp. 01012 ◽  
Author(s):  
Siyam Alhamad ◽  
Yasser Al Banna ◽  
Ahmad Al Osman ◽  
Jihad Mouthassseeb ◽  
Suliman Abdalla ◽  
...  

2019 ◽  
Vol 22 (14) ◽  
pp. 2998-3010 ◽  
Author(s):  
Zhao-Hui Lu ◽  
Hai Li ◽  
Wengui Li ◽  
Yan-Gang Zhao ◽  
Zhuo Tang ◽  
...  

Reinforcement corrosion exhibits an adverse effect on the shear strength of reinforced concrete structures. In order to investigate the effects of chloride-induced corrosion of reinforcing steel on the shear behavior and failure pattern of reinforced concrete beams, a total of 24 reinforced concrete beams with different concrete strength grades and arrangements of stirrups were fabricated, among which 22 beams were subjected to accelerated corrosion to achieve different degrees of reinforcement corrosion. The failure pattern, crack propagation, load–displacement response, and ultimate strength of these beams were investigated under a standard four-point loading test in this study. Extensive comparative analysis was conducted to investigate the effects of the concrete strength, shear span-to-depth ratio, and stirrup type on the shear behavior of the corroded reinforced concrete beams. The results show that increasing the stirrup yielding strength is more effective in improving the shear strength of corroded reinforced concrete beams than that of concrete compressive strength. In terms of three types of stirrups, the shear strength of the beams with deformed HRB-335 is least sensitive to stirrup corrosion, followed by the beams with smooth HPB-235 and the beams with deformed HRB-400. The effect of the different stirrups on the shear strength depends on the corrosion degree of stirrup and shear span-to-depth ratio of the beam. The predicted results of shear strength of corroded reinforced concrete beams by a proposed analytical model are well consistent with the experimental results.


2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
Walid Mansour ◽  
Bassam A. Tayeh

This study presents a numerical investigation on the shear behaviour of shear-strengthened reinforced concrete (RC) beams by using various ultrahigh performance fibre-reinforced concrete (UHPFRC) systems. The proposed 3D finite element model (FEM) was verified by comparing its results with those of experimental studies in the literature. The validated numerical model is used to analyse the crucial parameters, which are mainly related to the design of RC beams and shear-strengthened UHPFRC layers, such as the effect of shear span-to-depth ratio on the shear behaviour of the strengthened or nonstrengthened RC beams and the effect of geometry and length of UHPFRC layers. Moreover, the effect of the UHPFRC layers’ reinforcement ratio and strengthening of one longitudinal vertical face on the mechanical performance of RC beams strengthened in shear with UHPFRC layers is investigated. Results of the analysed beams show that the shear span-to-depth ratio significantly affects the shear behaviour of not only the normal-strength RC beams but also the RC beams strengthened with UHPFRC layers. However, the effect of shear span-to-depth ratio has not been considered in existing design code equations. Consequently, this study suggests two formulas to estimate the shear strength of normal-strength RC beams and UHPFRC-strengthened RC beams considering the effect of the shear span-to-depth ratio.


2012 ◽  
Vol 217-219 ◽  
pp. 2435-2439
Author(s):  
Ying Tao Li ◽  
Shi Yong Jiang ◽  
Bing Hong Li ◽  
Qian Hua Shi ◽  
Xian Qi Hu

An experimental program was carried out by the author to investigate the shear behavior of concrete beams reinforced with continuous FRP rectangular spirals, the main variables considered in the test were the shear reinforcement ratio and the shear span to depth ratio and the longitudinal reinforcement ratio. However, the experimental program is inadequate to gain insight into the shear behavior of the members. First, the quantities of test specimens were too small, only six beams were made and tested, the experimental database was so limited that the resultant analytical results and conclusions may not be sound enough. Second, not all the main factors that have influences on the shear behavior of the members have been treated as variables in the experimental program, such as the effective transverse compression stress and the concrete compression strength, the influences of these two factor on the shear behavior of the members were not clear yet through the experimental study. Considering the insufficient information provided by the experimental investigation, the parametric analysis of the shear behavior of the members was carried out, and a revised rotating-angle softened truss model for the shear analysis of the members was proposed as the analytical tool. Based on the proposed model, the influences of various factors on the shear capacity and shear failure modes of the members were discussed, related nonlinear analysis was carried out using the arithmetic of iteration and step approximation, and several FORTRAN codes were written accordingly. Through the experimental study and the parametric analysis, it is indicated that the shear capacity and the shear failure modes of the members are greatly influenced by three major factors, including the shear reinforcement ratio and the shear span to depth ratio and the effective transverse compression stress. The influences of the concrete compression strength and the longitudinal reinforcement ratio on the shear capacity are not noticeable comparatively. The shear capacity is little affected by the shear span to depth ratio in the case of the shear-tension failure, there is no noticeable correlation between longitudinal reinforcement ratio and the shear failure modes.


2014 ◽  
Vol 578-579 ◽  
pp. 1327-1331
Author(s):  
Hai Xia Zhang ◽  
Lu Yuan He ◽  
Hong Liu

This paper focuses on the characterization of shear behavior of RC beams strengthened with Near-Surface Mounted (NSM) GFRP bars. Based on ABAQUS, the finite element model for the shear behavior is established and the simulated results are compared with the test results. The parameters including spacing and inclination of GFRP bars, mechanical properties of the groove-filling epoxy, stirrup ratio and shear-span ratio of the specimen beams for the shear behavior are discussed. The simulated results show that there has a good agreement with the experiment results. The beams strengthened with NSM GFRP bars have a significant improvement in shear capacity. Further more, the analysis results on the parameters indicate that ultimate shear capacity of the beam strengthened with NSM-GFRP bars gradually increases with the decrease of spacing of GFRP bars. The ultimate bearing capacity increases of the strengthened beam with inclination of 45° is the more larger than those of 60° and 90°. The different types of epoxy adhesive and shear-span ratio have a great influence on the load-deflection curves of the strengthened beams.


Structures ◽  
2021 ◽  
Vol 32 ◽  
pp. 1734-1751
Author(s):  
Emad E. Etman ◽  
Hamdy M. Afefy ◽  
Ahmed T. Baraghith ◽  
Mohammed Abuelwafa

Sign in / Sign up

Export Citation Format

Share Document