scholarly journals Effect of shear span-to-depth ratio on the shear behavior of BFRP-RC deep beams

2017 ◽  
Vol 120 ◽  
pp. 01012 ◽  
Author(s):  
Siyam Alhamad ◽  
Yasser Al Banna ◽  
Ahmad Al Osman ◽  
Jihad Mouthassseeb ◽  
Suliman Abdalla ◽  
...  
2018 ◽  
Vol 162 ◽  
pp. 04013
Author(s):  
Hassan Hassan ◽  
Mu’taz Medhlom ◽  
Mohammed Hatem

This research is devoted to investigate the experimental and theoretical behavior of deep beams under monotonic two points loading. An experimental program examining six RC deep beams is carried out. The investigated parameters include shear span to depth ratio varying from 1.0 to 0.276. A comparative study is conducted in this paper by using finite element software ANSYS. The experimental and numerical results show that concrete strength and shear span to depth ratio are the two most important parameters in controlling the behavior of RC deep beams. Comparison of experimental results was made with corresponding predicted values using the Strut and Tie procedure presented ACI 318M-11Code and with other procedures mentioned in the literature. It was found that the Strut and Tie procedure presented in ACI 318M-11Code give conservative results as compared with the experimental tested results. The results showed reliability of analysis in predicting deep beams behavior in terms of failure load, failure mode as well as crack propagation.


2019 ◽  
Vol 22 (14) ◽  
pp. 2998-3010 ◽  
Author(s):  
Zhao-Hui Lu ◽  
Hai Li ◽  
Wengui Li ◽  
Yan-Gang Zhao ◽  
Zhuo Tang ◽  
...  

Reinforcement corrosion exhibits an adverse effect on the shear strength of reinforced concrete structures. In order to investigate the effects of chloride-induced corrosion of reinforcing steel on the shear behavior and failure pattern of reinforced concrete beams, a total of 24 reinforced concrete beams with different concrete strength grades and arrangements of stirrups were fabricated, among which 22 beams were subjected to accelerated corrosion to achieve different degrees of reinforcement corrosion. The failure pattern, crack propagation, load–displacement response, and ultimate strength of these beams were investigated under a standard four-point loading test in this study. Extensive comparative analysis was conducted to investigate the effects of the concrete strength, shear span-to-depth ratio, and stirrup type on the shear behavior of the corroded reinforced concrete beams. The results show that increasing the stirrup yielding strength is more effective in improving the shear strength of corroded reinforced concrete beams than that of concrete compressive strength. In terms of three types of stirrups, the shear strength of the beams with deformed HRB-335 is least sensitive to stirrup corrosion, followed by the beams with smooth HPB-235 and the beams with deformed HRB-400. The effect of the different stirrups on the shear strength depends on the corrosion degree of stirrup and shear span-to-depth ratio of the beam. The predicted results of shear strength of corroded reinforced concrete beams by a proposed analytical model are well consistent with the experimental results.


2014 ◽  
Vol 931-932 ◽  
pp. 473-477
Author(s):  
Prach Amornpinnyo ◽  
Jaruek Teerawong

This paper presents the test results on the shear behavior of reinforced concrete deep beams with six steel reinforcement configurations. They were designed in accordance with the method given in the ACI 318-11. The specimens were subjected to the single concentrated loading at mid-span. The horizontal to vertical reinforcement ratios and shear span-to-effective depth ratios were the variables studied. The shear span-to-effective depth ratios of the beam specimen were between 1.5 to 2.0. The strut-and-tie model was used for the analysis. The test results indicated that the first diagonal cracking load and the failure mode were controlled by the horizontal to vertical reinforcement ratios and the shear span-to-depth ratios. The tests consistently gave the strength values slightly less than those calculated by using the ACI model. A modified ACI model for strut-and-tie was thus proposed and was found to accurately fit the experimental results.


2012 ◽  
Vol 41 ◽  
pp. 294-306 ◽  
Author(s):  
Giuseppe Campione ◽  
Giovanni Minafò
Keyword(s):  

2013 ◽  
Vol 343 ◽  
pp. 21-26
Author(s):  
Raj J. Leon ◽  
G. Appa Rao

The behaviour of reinforced concrete deep beams is complex due to small shear span-to-depth ratios, which deviates its behaviour from the classical Bernoullis beam behaviour. Such behaviour is predominant in cases where members are supported over small spans carrying heavy concentrated or distributed loads. Such is the case in the structural members like pile cap, transfer girder, panel beam, strap beam in foundation, walls of rectangular water tank, shear wall etc. This paper reports on the influence of Poly propylene fibers combined with and without steel fibers on the stiffness, spall resistance and shear strength of RC deep beams. A total of 21 beams were tested to failure under two-point loading, which were compared with the ACI code provisions. The shear span-to-depth ratios adopted were 0.7 to 0.9 incorporating three steel fiber volume fractions of 0%, 1%, 1.25% along with two different fibers of Steel and Poly propylene with volume fractions of (1.0 + 0.0) %, and (1.0 + 1.0) %. The beams with shear span-to-depth ratios 0.7, 0.8 and 0.9 showed an increase of 21.9%, 23.43% and 23.9% in the ultimate load carrying capacity with combined steel and poly propylene fibers as replacement of web reinforcement with reference to that of the beam without web reinforcement. With the above combinations, the shear strength and stiffness of the beams have been found to be improved. When the horizontal shear reinforcement was increased, the shear strength was found to increase.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Buqing Chen ◽  
Jun Wu ◽  
Changjun Liu ◽  
Yanhua Liu ◽  
Wenmei Zhou ◽  
...  

Seven steel-reinforced concrete (SRC) deep beams were tested to investigate the shear performance, including peak loads, failure modes, mid-span deflections, and cracking patterns. The parameters include the shear span-to-depth ratio and the dimensions of the steel skeleton. The digital image correlation (DIC) technique was utilized for real-time recording of the in-plane strain and deformation. The experiment results show that the failure modes of specimens could be concluded as two forms: diagonal compression failure and shear failure. The DIC technique was proved to be efficient for tracking the development of crack patterns and recording the failure modes. The corresponding numerical analyses based on experiments were carried out and demonstrated to be a reliable method to simulate the shear response. Furthermore, the most significant parameters and their interactions were identified by finite element models parameter analysis. The steel skeleton height and shear span-to-depth ratio were the main parameters affecting shear capacity. A design formula based on the strength superposition method was presented. The calculated results were basically in agreement with the test results, where the mean and coefficient of variation were 1.04 and 0.09, respectively.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1218 ◽  
Author(s):  
Jun-Hong Zhang ◽  
Shu-Shan Li ◽  
Wei Xie ◽  
Yang-Dong Guo

This study aimed to investigate the shear capacity performance for eight deep beams with HTRB600 reinforced high strength concrete under concentrated load to enable a better understanding of the effects of shear span–depth ratio, longitudinal reinforcement ratio, vertical stirrup ratio and in order to improve design procedures. The dimension of eight test specimens is 1600 mm × 200 mm × 600 mm. The effective span to height ratio l0/h is 2.0, the shear span–depth ratio λ is 0.3, 0.6 and 0.9, respectively. In addition, the longitudinal reinforcement ratio ρs is set to 0.67%, 1.05%, 1.27%, and the vertical stirrup ratio is taken to be 0%, 0.25%, 0.33%, 0.5%. Through measuring the strain of steel bar, the strain of concrete and the deflection of mid-span, the characteristics of the full process of shear capacity, the failure mode and the load deflection deformation curve were examined. The test results showed that the failure mode of deep beams with small shear span–depth ratio is diagonal compression failure, which is influenced by the layout and quantity of web reinforcement. The diagonal compression failure could be classified into two forms: crushing-strut and diagonal splitting. With decreasing of shear span–depth ratio and increasing longitudinal reinforcement ratio, the shear capacity of deep beams increases obviously, while the influence of vertical web reinforcement ratio on shear capacity is negligible. Finally, the shear capacity of eight deep beams based on GB 50010-2010 is calculated and compared with the calculation results of ACI 318-14, EN 1992-1-1:2004 and CSA A23.3-04, which are based on strut-and-tie model. The obtained results in this paper show a very good agreement with GB50010-2010 and ACI 318-14, while the results of EN 1992-1-1:2004 and CSA A23.3-04 are approved to be conservative.


2012 ◽  
Vol 217-219 ◽  
pp. 2435-2439
Author(s):  
Ying Tao Li ◽  
Shi Yong Jiang ◽  
Bing Hong Li ◽  
Qian Hua Shi ◽  
Xian Qi Hu

An experimental program was carried out by the author to investigate the shear behavior of concrete beams reinforced with continuous FRP rectangular spirals, the main variables considered in the test were the shear reinforcement ratio and the shear span to depth ratio and the longitudinal reinforcement ratio. However, the experimental program is inadequate to gain insight into the shear behavior of the members. First, the quantities of test specimens were too small, only six beams were made and tested, the experimental database was so limited that the resultant analytical results and conclusions may not be sound enough. Second, not all the main factors that have influences on the shear behavior of the members have been treated as variables in the experimental program, such as the effective transverse compression stress and the concrete compression strength, the influences of these two factor on the shear behavior of the members were not clear yet through the experimental study. Considering the insufficient information provided by the experimental investigation, the parametric analysis of the shear behavior of the members was carried out, and a revised rotating-angle softened truss model for the shear analysis of the members was proposed as the analytical tool. Based on the proposed model, the influences of various factors on the shear capacity and shear failure modes of the members were discussed, related nonlinear analysis was carried out using the arithmetic of iteration and step approximation, and several FORTRAN codes were written accordingly. Through the experimental study and the parametric analysis, it is indicated that the shear capacity and the shear failure modes of the members are greatly influenced by three major factors, including the shear reinforcement ratio and the shear span to depth ratio and the effective transverse compression stress. The influences of the concrete compression strength and the longitudinal reinforcement ratio on the shear capacity are not noticeable comparatively. The shear capacity is little affected by the shear span to depth ratio in the case of the shear-tension failure, there is no noticeable correlation between longitudinal reinforcement ratio and the shear failure modes.


Sign in / Sign up

Export Citation Format

Share Document