Building-Information-Modeling–Based Earthquake Damage Assessment for Reinforced Concrete Walls

2016 ◽  
Vol 30 (4) ◽  
pp. 04015076 ◽  
Author(s):  
Engin Burak Anil ◽  
Burcu Akinci ◽  
Ozgur Kurc ◽  
James H. Garrett
2013 ◽  
Vol 711 ◽  
pp. 623-628 ◽  
Author(s):  
A Ra Ko ◽  
Je Hyuk Lee ◽  
Hyun Suk Jang ◽  
Seung Il Lee ◽  
Young Sang Cho

Structural building information modeling (S-BIM) for reinforced concrete walls based on parametric technique has studied. There are structural analysis and design packages for reinforced concrete structures. 3D BIM platforms which are recently developed and widely adopted in the construction industry are mostly experiencing a difficulty in interoperability with structural analysis and design packages. The modeling of reinforcement placement in the reinforced concrete structures can not be performed using current BIM platforms based on the result of structural analysis and design. This study develops the algorithm and implementation of integrated reinforcement bar placement system by creating a database that stores the results of structural analysis and design so that overall reinforced concrete model including re-bar can be built. Utilization of S-BIM can reduce the time of engineering, the production of working drawing and shop drawing.


2018 ◽  
Vol 34 (3) ◽  
pp. 1201-1217 ◽  
Author(s):  
Enrique Villalobos ◽  
Chungwook Sim ◽  
J. Paul Smith-Pardo ◽  
Pedro Rojas ◽  
Santiago Pujol ◽  
...  

A damage assessment survey of 169 low-rise reinforced concrete buildings was conducted following the 16 April 2016 Ecuador earthquake. Forty-four percent of the buildings surveyed sustained severe structural damage. Using the collected data, seismic vulnerability indices were calculated to examine their correlation with damage observations. It was found that 92% of the buildings with observed severe structural damage had calculated wall and column index pairs (WI, CI) that satisfied the relation WI+CI/2 < 0.2%. The frequency of damage was lower for higher-priority index values, defined as the sum of CI+WI. Furthermore, frequency of damage in buildings with captive columns was observed to decrease with window height-to-column height ratios of more than 20%.


Author(s):  
A. Ilki ◽  
O. F. Halici ◽  
M. Comert ◽  
C. Demir

AbstractPost-Earthquake damage assessment has always been one of the major challenges that both engineers and authorities face after disastrous earthquakes all around the world. Considering the number of buildings in need of inspection and the insufficient number of qualified inspectors, the availability of a thorough, quantitative and rapidly applicable damage assessment methodology is vitally important after such events. At the beginning of the new millennia, an assessment system satisfying these needs was developed for the Turkish Catastrophe Insurance Pool (TCIP, known as DASK in Turkey) to evaluate the damages in reinforced concrete (RC) and masonry structures. Since its enforcement, this assessment method has been successfully used after several earthquakes that took place in Turkey, such as 2011 Van Earthquake, 2011 Kutahya Earthquake, 2019 Istanbul Earthquake and 2020 Elazig Earthquake to decide the future of damaged structures to be either ‘repaired’ or ‘demolished’. Throughout the years, the number of research activities focusing on the reparability of earthquake-damaged structures has increased, which is a purposeful parameter in the determination of buildings’ future after earthquakes. Accordingly, TCIP initiated a research project with a sole aim to regulate and reevaluate the damage assessment algorithm based on the results of state-of-the-art scientific research. This chapter presents the new version of the damage assessment methodology for reinforced concrete structures which was developed for TCIP (TCIP-DAM-2020). In addition, an application of the developed damage assessment algorithm on an earthquake-damaged reinforced concrete building which was struck by Kocaeli (1999) earthquake is presented.


2012 ◽  
Vol 166-169 ◽  
pp. 2304-2308
Author(s):  
Chao Feng Liu ◽  
Jing Yu Su ◽  
Xiao Dong Guo ◽  
Wei Wang

In order to improve the accuracy of earthquake damage assessment of reinforced concrete structure, the earthquake damage assessment mutation model and four-dimensional model of seismic damage analysis are established using catastrophe theory. Firstly, internal damage index, number of inelastic cycles, maximum inter-storey drift and energy-concentrated quotient were taken as evaluation factors. Value assignment and standardization of each evaluation index is conducted. The appropriate mutation model is selected to calculate the total mutation value of seismic damage and comparison with the evaluation criteria of seismic damage of reinforced concrete structure, the extent of structural damage is differentiated. Secondly, comprehensive consideration of people's initiative and non-linear characteristics of the system, a four-dimensional seismic damage analysis model is build based on the mutation assessment of earthquake damage. Finally, four different structures are calculated and the results are compared with the ones of variable fuzzy set theory, set-pair theory to verify the reasonableness and effectiveness of the method.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3456
Author(s):  
Young-Hwi Kim ◽  
Jin-Seok Choi ◽  
Tian-Feng Yuan ◽  
Young-Soo Yoon

It is important to consider establishing a shelter in place (SIP) using existing facilities to prepare for unpredictable and no-notice disasters. In this study, we evaluate the building-information-modeling (BIM)-based approach to simulate the strategic location of SIP and its strengthening method. BIM software was used to model a light rail station and analyze the elements of the facility that can affect the evacuation time to reach the SIP. The purpose of this study was to understand the effects of structural standards on the design of SIPs using a direct simulation. The differences between domestic and overseas standards were analyzed. An analysis was carried out to evaluate whether national specifications are satisfactory. As the proposed evacuation method is based on a rational human behavior analysis through a direct simulation, it was going to be a safer and faster route of evacuation in the case of physical terror attack situations for existing infrastructure, Furthermore, the SIP design is considered where reinforcement of the SIP structure is necessary. Three types of reinforcing were considered. Here, the use of high-strength, high-ductility concrete proved to be an effective method to improve the impact resistance of reinforced concrete walls and recommended for strengthening reinforced concrete members.


Sign in / Sign up

Export Citation Format

Share Document