Enhancement of Aromatic Hydrocarbon Biodegradation by Toluene and Naphthalene Degrading Bacteria Obtained from Lake Sediment: The Effects of Cosubstrates and Cocultures

2009 ◽  
Vol 135 (9) ◽  
pp. 854-860 ◽  
Author(s):  
Richard S. Horng ◽  
Chun-Hsiung Kuei ◽  
Wen-Chang Chen
2021 ◽  
Vol 9 (6) ◽  
pp. 1200
Author(s):  
Gareth E. Thomas ◽  
Jan L. Brant ◽  
Pablo Campo ◽  
Dave R. Clark ◽  
Frederic Coulon ◽  
...  

This study evaluated the effects of three commercial dispersants (Finasol OSR 52, Slickgone NS, Superdispersant 25) and three biosurfactants (rhamnolipid, trehalolipid, sophorolipid) in crude-oil seawater microcosms. We analysed the crucial early bacterial response (1 and 3 days). In contrast, most analyses miss this key period and instead focus on later time points after oil and dispersant addition. By focusing on the early stage, we show that dispersants and biosurfactants, which reduce the interfacial surface tension of oil and water, significantly increase the abundance of hydrocarbon-degrading bacteria, and the rate of hydrocarbon biodegradation, within 24 h. A succession of obligate hydrocarbonoclastic bacteria (OHCB), driven by metabolite niche partitioning, is demonstrated. Importantly, this succession has revealed how the OHCB Oleispira, hitherto considered to be a psychrophile, can dominate in the early stages of oil-spill response (1 and 3 days), outcompeting all other OHCB, at the relatively high temperature of 16 °C. Additionally, we demonstrate how some dispersants or biosurfactants can select for specific bacterial genera, especially the biosurfactant rhamnolipid, which appears to provide an advantageous compatibility with Pseudomonas, a genus in which some species synthesize rhamnolipid in the presence of hydrocarbons.


2020 ◽  
Vol 9 (1) ◽  
pp. 3
Author(s):  
Saskia Rughöft ◽  
Nico Jehmlich ◽  
Tony Gutierrez ◽  
Sara Kleindienst

The application of chemical dispersants during marine oil spills can affect the community composition and activity of marine microorganisms. Several studies have indicated that certain marine hydrocarbon-degrading bacteria, such as Marinobacter spp., can be inhibited by chemical dispersants, resulting in lower abundances and/or reduced biodegradation rates. However, a major knowledge gap exists regarding the mechanisms underlying these physiological effects. Here, we performed comparative proteomics of the Deepwater Horizon isolate Marinobacter sp. TT1 grown under different conditions. Strain TT1 received different carbon sources (pyruvate vs. n-hexadecane) with and without added dispersant (Corexit EC9500A). Additional treatments contained crude oil in the form of a water-accommodated fraction (WAF) or chemically-enhanced WAF (CEWAF; with Corexit). For the first time, we identified the proteins associated with alkane metabolism and alginate biosynthesis in strain TT1, report on its potential for aromatic hydrocarbon biodegradation and present a protein-based proposed metabolism of Corexit components as carbon substrates. Our findings revealed that Corexit exposure affects hydrocarbon metabolism, chemotactic motility, biofilm formation, and induces solvent tolerance mechanisms, like efflux pumps, in strain TT1. This study provides novel insights into dispersant impacts on microbial hydrocarbon degraders that should be taken into consideration for future oil spill response actions.


2021 ◽  
pp. 117424
Author(s):  
Ali Akbari ◽  
Carolyn David ◽  
Arshath Abdul Rahim ◽  
Subhasis Ghoshal

1994 ◽  
Vol 40 (11) ◽  
pp. 981-985 ◽  
Author(s):  
J. B. Sotsky ◽  
C. W. Greer ◽  
R. M. Atlas

A significant proportion of the naturally occurring hydrocarbon-degrading populations within Alaskan sediments affected by the Exxon Valdez oil spill had both the xylE and alkB genes and could convert hexadecane and naphthalene to carbon dioxide; a greater proportion of the population had xylE than had alkB, reflecting the composition of the residual oil at the time of sampling; nearly equal populations with xylE alone, alkB alone, and xylE + alkB genes together were found after exposure to fresh crude oil; populations with xylE lacking alkB increased after enrichment on naphthalene. Thus, the genotypes of hydrocarbon-degrading populations reflected the composition of the hydrocarbons to which they were exposed.Key words: hydrocarbon biodegradation, aromatic hydrocarbon biodegradation, aliphatic hydrocarbon biodegradation, alkB, xylE.


2019 ◽  
Vol 7 (2) ◽  
pp. 33 ◽  
Author(s):  
Eric Marques ◽  
Gislaine Silva ◽  
João Dias ◽  
Eduardo Gross ◽  
Moara Costa ◽  
...  

Restricted contact with the external environment has allowed the development of microbial communities adapted to the oligotrophy of caves. However, nutrients can be transported to caves by drip water and affect the microbial communities inside the cave. To evaluate the influence of aromatic compounds carried by drip water on the microbial community, two limestone caves were selected in Brazil. Drip-water-saturated and unsaturated sediment, and dripping water itself, were collected from each cave and bacterial 16S rDNA amplicon sequencing and denaturing gradient gel electrophoresis (DGGE) of naphthalene dioxygenase (ndo) genes were performed. Energy-dispersive X-ray spectroscopy (EDX) and atomic absorption spectroscopy (AAS) were performed to evaluate inorganic nutrients, and GC was performed to estimate aromatic compounds in the samples. The high frequency of Sphingomonadaceae in drip water samples indicates the presence of aromatic hydrocarbon-degrading bacteria. This finding was consistent with the detection of naphthalene and acenaphthene and the presence of ndo genes in drip-water-related samples. The aromatic compounds, aromatic hydrocarbon-degrading bacteria and 16S rDNA sequencing indicate that aromatic compounds may be one of the sources of energy and carbon to the system and the drip-water-associated bacterial community contains several potentially aromatic hydrocarbon-degrading bacteria. To the best of our knowledge, this is the first work to present compelling evidence for the presence of aromatic hydrocarbon-degrading bacteria in cave drip water.


Sign in / Sign up

Export Citation Format

Share Document