Examining Fate and Transport of Heavy Metal in Landfill Site through Numerical Environmental Multimedia Modeling Approach

2020 ◽  
Vol 146 (5) ◽  
pp. 04020026
Author(s):  
Jinxin Dong ◽  
Zhi Chen ◽  
Ke Wang ◽  
Yi Han ◽  
Jianbo Guo
2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744087 ◽  
Author(s):  
Guozhong Dai ◽  
Weicheng Shi ◽  
Xiaoshu Jiang ◽  
Guicai Shi ◽  
Yaxing Zhang

In order to develop a kind of slurry with low permeability which has some adsorption and retardation to the pollutants in leachate to be used in antiseepage engineering of leachate for landfill site, experiments based on orthogonal method were performed. The optimal PBFC slurry was selected: bentonite 18–26%, cement 16–24%, fly ash 18–20%, TOJ800-10 water reducing agent 0.01–0.03%, polyvinyl alcohol 0.2–0.8%, sodium carbonate 0.8–1.5% and water 680–780/1000 mL seriflus. The material has good groutability and a concretion stone ratio which is greater than 99.6%. The coefficient of permeability of 28-day concretion body is 0.53 × 10[Formula: see text]–1.86 × 10[Formula: see text] cm/s and the compressive strength is 0.64–1.04 MPa. The slurry has good adsorption and retardation properties. The block rate of NH4-N and phosphorus reached 98.28%, and the block rate of CODCr and BOD5 reached 85.67%. The block rate of Hg, Pb and other heavy metal ions reached 99.8%. The PBFC slurry improved the retardation capability of the pollutants of the leachate at the landfill site by its infiltration sedimentation and adsorption fixation.


2021 ◽  
Vol 9 (2) ◽  
pp. 105-116
Author(s):  
Hassan Aslani ◽  
◽  
Shobo Mohammadi ◽  
Hassan Taghipour ◽  
Mahmoud Ravosh ◽  
...  

Background: Hazardous materials, such as used batteries contain heavy metals and enter the solid waste stream, ending up in landfills. The present study was done to determine the amount of used batteries in Iran and their heavy metal contents in the batteries entering the landfill site in Tabriz. Methods: A questionnaire was applied to assess the current management condition of the used batteries in Tabriz and Ardabil as the representative cities of the entire country. The heavy metal content of 15 AA-sized batteries was determined by inductively coupled plasma. Results: Our findings showed that 14.7% of the used batteries in Iran have been imported, and approximately 76% and 24% of the batteries analyzed at the landfill site were AA-sized and cellphone batteries, respectively. In 60% of the studied batteries, the total heavy metal content was less than 100 mg/kg. Conclusion: The results of this study could be a useful reference for global and local policymakers in developing effective regulations for the use of cleaner materials in the battery industry and controlling the used batteries from their generation to the end of the battery life


2001 ◽  
Vol 37 (1) ◽  
pp. 1-8
Author(s):  
KWEON JUNG ◽  
YOUNG C.CHANG ◽  
YOUNG S.YOO ◽  
KAZUHIRO TAKAMIZAWA

Sign in / Sign up

Export Citation Format

Share Document