active biomass
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 14)

H-INDEX

21
(FIVE YEARS 0)

2021 ◽  
pp. 14-19
Author(s):  
K.S. Krishnamurthy ◽  
K. Kandiannan

Source sink relationship, dry matter and starch partitioning, rhizome bulking process in relation to dry matter and starch partitioning in developing rhizomes and growth and gas exchange parameters were studied in three popular varieties of ginger viz., IISR Varada, IISR Mahima and IISR Rejatha. Results revealed that maximum tiller production and leaf area accumulation occurred between 60 and 120 days after planting (DAP) in all three varieties. Photosynthetic rate and hormone contents (auxin and cytokinin) increased from 90-120 DAP, peaked at 120 DAP and then started declining. Biomass partitioning data revealed that the active biomass accumulation stage was between 60 and 150 DAP in ginger. The dry matter accumulation pattern in rhizomes also revealed that maximum dry matter accumulation in rhizomes also occurred between 60 and 150 DAP in all the three varieties. Maximum starch accumulation in the rhizomes also occurred during the same period. These results suggest that most of the rhizome bulking process occurred between 60 and150 DAP in ginger. Total biomass accumulation, dry matter accumulation and starch accumulation in rhizomes followed similar trends.


Author(s):  
Mateusz Kutyła ◽  
Mariusz Trytek ◽  
Katarzyna Buczek ◽  
Ewa Tomaszewska ◽  
Siemowit Muszyński

AbstractA biomass-bound lipase from psychrophilic Chrysosporium pannorum A-1 is an efficient biocatalyst for direct esterification of β-citronellol and acetic acid in an organic solvent. The biomass is effectively produced by fungal submerged culture at 20 ℃, which results in lower energy consumption during the production of biocatalyst. Supplementation of the culture medium with calcium carbonate together with olive oil contributed to a significant increase in the active biomass of mycelium in one batch culture and increased the efficiency of the biocatalyst. Biomass-bound lipase showed high catalytic activity in a broad temperature range of 30–60 °C and stability up to 70 °C. A maximum molar conversion value of 98% was obtained at 30 °C in n-hexane using a 2:1 alcohol-to-acid molar ratio and 3% w/v of the biocatalyst within 24 h. The high equimolar concentration of the substrates (200 mM) did not have an adverse effect on mycelial biomass activity. Dry mycelium of C. pannorum is a promising biocatalyst for large-scale biosynthesis of citronellyl acetate, given its low-cost production, high activity at low temperatures, and reusability in a minimum of seven 24-h biocatalytic cycles.


2021 ◽  
pp. 125334
Author(s):  
Rosana Oliveira Menezes ◽  
Tiago Palladino Delforno ◽  
Daniele Damasceno Silveira ◽  
Tijana Radojicic ◽  
Flavio Rubens Lapolli ◽  
...  

Author(s):  
Andrew N. Beshentsev ◽  
◽  
Alexander A. Ayurzhanaev ◽  
Bator V. Sodnomov ◽  
◽  
...  

The article is aimed at the development of methodological foundations for the creation of geoin-formation resources of transboundary territories based on cartographic materials and remote sensing data, as well as physical and geographical zoning of the transboundary Russian-Mongolian territory. The methodological basis of the study is cartographic and statistical research methods, geoinformation technology, as well as processing and analysis of remote sensing data. As a result, the study deter-mines the features of geoinformation resources, presents their characteristics, develops a classification and substantiates their integrating value in making interstate territorial decisions. The article gives the physical and geographical characteristics of the territory, determines the scale of mapping, establishes the basic units of geoinformation mapping and modeling, creates the coverage of the basin division, and proposes a scheme for creating basic geoinformation resources for the physical and geographical zoning of the territory. Based on the analysis of the digital elevation model, the territory was zoned according to the morphometric parameters of the relief. As a result of processing and analysis of Landsat images at different times, the territory was zoned in terms of the amount of photosynthetically active biomass (NDVI). As a result of zoning, 6 physical-geographical regions and 33 physical-geographical areas were identified.


Author(s):  
Loren Ramsay ◽  
Feng Du ◽  
Majbritt Lund ◽  
Haiyan He ◽  
Ditte A. Søborg

Abstract Backwashing rapid sand filters causes inadvertent displacement of filter media grains from their previous depths. This displacement can affect the hydraulic function of filters by mixing or segregating media grains, and the function of biofilters through displacement of active biomass and coatings from proper depths. This study quantifies grain displacement in a pilot-scale filter using tracer grains of colored sand, glass beads, anthracite and garnet to determine the effect of grain size, density and shape on grain displacement. Statistical moments are used to describe the depth distributions resulting from displacement during backwashing. Results show that significant grain displacement occurs during backwash consisting of air scour, air-and-water wash and sub-fluidization water-only wash. Here, displacement is largely independent of grain size, density and shape. When fluidization backwash is used, greater displacement and more dependence on grain characteristics is seen. A variety of grain movement phenomena can be observed during the backwashing steps, indicating that grain movement and therefore the resulting displacement is highly inhomogeneous in four dimensions. These results have direct practical implications for the design of rapid sand filters and the optimization of backwashing procedures, while suggesting that the current widespread backwashing practice used in the case study country (Denmark) should be abandoned.


2020 ◽  
Vol 273 ◽  
pp. 111150
Author(s):  
Franklin Lindow ◽  
Carlos Muñoz ◽  
Francisco Jaramillo ◽  
Robert H. Bishop ◽  
José B. Proal-Nájera ◽  
...  

2020 ◽  
Vol 11 ◽  
pp. e3264
Author(s):  
Iván Francisco García-Tejero ◽  
Almudena Hernández ◽  
Carlos Ferreiro-Vera ◽  
Victor Hugo Durán Zuazo ◽  
Jesus Hidalgo García ◽  
...  

Under the effects of climate change new drought tolerant crops are imperative to introduce in irrigated agricultural areas of Mediterranean countries. In this sense, hemp (Cannabis sativa L.) represents an alternative in many semi-arid agricultural areas of Mediterranean basin because of its low water requirements and cost effectiveness when it is developed under non controlled conditions. The aim of this work was to evaluate the potential yield of five new hemp varieties (Sara, Pilar, Aida, Theresa, and Juani) cultivated under high tunnel conditions in a semi-arid Mediterranean area, and also to study the effect of plant density on active biomass production and cannabinoids biosynthesis (cannabidiol, CBD and cannabigerol, CBG) at different plant positions. The trial was conducted under plastic macro-tunnels during two seasons (2014 and 2015), from May to October. The agronomic response and the chemical profiles of the studied varieties were evaluated at the end of each season. Moreover, it was monitored the differentiation in terms of active biomass production and cannabinoids biosynthesis in different plant organ positions (at upper, medium, and lower). Additionally, during the second season, three different plant densities (PD1, 9,777; PD2, 7,333; and PD3, 5,866 plants· ha-1) were tested in order to define the the best of them for maximizing CBD and CBG productions. The findings highlighted significant differences in yield between cultivars within the CBD and CBG. Moreover, plant density was a determinant factor related to active biomass production and cannabinoids contents, PD3 representing a suitable strategy to maximize the cannabinoids production minimizing the requirements of rooted apical cuttings. These results allowed concluding that these new hemp cultivars together with the adopted agronomic practices in this experience would be very appropriate for CBD and CBG productions, being determinant to consider the plant density and the cultivar for both studied chemotypes.


2020 ◽  
Vol 103 (2) ◽  
pp. 439-448
Author(s):  
Aleksandra Kaleniecka ◽  
Paweł K Zarzycki

Abstract Background: This research reports a multivariate experiment enabling observation of the potential application of macrocyclic compound [β-cyclodextrin (β-CD)] and/or duckweed organisms as the active factors for elimination of selected bisphenols A, B, and S from water samples. Objective: Target bisphenols selection was based on observation that such components can be present in food or environmental samples (e.g., vegetable/fruit juices, milk, drinking water, or treated wastewater). Methods: Biological research was carried out using aquatic organisms containing chlorophyll, particularly duckweed (Lemna minor L), that may work as an active biomass for the elimination or extraction of bisphenols micropollutants from water. Using such a system, we studied the potential encapsulation effect and removal efficiency of nontoxic macrocyclic oligosaccharide (β-cyclodextrin) acting as an encapsulation reagent to promote the removal of selected bisphenols from liquid phase both with and without the presence of duckweed biomass. Results: Experimental data have revealed that β-CD or combined β-CD/duckweed system has an effect on bisphenols elimination from water. The initial data set obtained from this preliminary experiment (and combined with supramolecular complex formation data calculated from chromatographic experiments, published previously) enables designing of further experiments focusing on the development of green chemistry technology. Conclusions: It is hoped that this may be used for the efficient removal of low-molecular-mass micropollutants using classical technological wastewater treatment processes modified by biomass and macrocyclic additives. This process needs to be optimized, but the results presented have revealed that such green chemistry technology, if successful, may be an interesting alternative for the selective removal of the micropollutants investigated from wastewater using classical adsorbents (e.g., carbons and carbon-related nanomaterials), particularly in terms of the worldwide problem with microplastic pollutants in the environment and food products.


Sign in / Sign up

Export Citation Format

Share Document