Experimental Study of Mechanical Behavior of Interlayer Staggered Zone under Cyclic Loading and Unloading Condition

2020 ◽  
Vol 20 (3) ◽  
pp. 04019187 ◽  
Author(s):  
Shuqian Duan ◽  
Quan Jiang ◽  
Dingping Xu ◽  
Guofeng Liu
2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Baoyun Zhao ◽  
Dongyan Liu ◽  
Ziyun Li ◽  
Wei Huang ◽  
Qian Dong

In order to investigate the mechanical behavior of shale rock under cyclic loading and unloading condition, two kinds of incremental cyclic loading tests were conducted. Based on the result of the short-term uniaxial incremental cyclic loading test, the permanent residual strain, modulus, and damage evolution were analyzed firstly. Results showed that the relationship between the residual strains and the cycle number can be expressed by an exponential function. The deformation modulus E50 and elastic modulus ES first increased and then decreased with the peak stress under the loading condition, and both of them increased approximately linearly with the peak stress under the unloading condition. On the basis of the energy dissipation, the damage variables showed an exponential increasing with the strain at peak stress. The creep behavior of the shale rock was also analyzed. Results showed that there are obvious instantaneous strain, decay creep, and steady creep under each stress level and the specimen appears the accelerated creep stage under the 4th stress of 51.16 MPa. Based on the characteristics of the Burgers creep model, a viscoelastic-plastic creep model was proposed through viscoplastic mechanics, which agrees very well with the experimental results and can better describe the creep behavior of shale rock better than the Burgers creep model. Results can provide some mechanics reference evidence for shale gas development.


2020 ◽  
Vol 38 (6) ◽  
pp. 5839-5850
Author(s):  
Laishan Chang ◽  
Yuan Chang ◽  
Yalin Wu ◽  
Xiaoxiao Sang

2018 ◽  
Vol 27 (8) ◽  
pp. 2530-2536 ◽  
Author(s):  
J. Glasbrenner ◽  
C. Domnick ◽  
M. J. Raschke ◽  
T. Willinghöfer ◽  
C. Kittl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document