Rockfill Particle Breakage Generated by Wetting Deformation under the Complex Stress Path

2020 ◽  
Vol 20 (10) ◽  
pp. 04020166
Author(s):  
Yufeng Jia ◽  
Bin Xu ◽  
Chandrakant S. Desai ◽  
Shichun Chi ◽  
Biao Xiang
2009 ◽  
Vol 46 (5) ◽  
pp. 536-552 ◽  
Author(s):  
Xiong Zhang ◽  
Robert L. Lytton

The traditional state-surface approach to the study of unsaturated soil behavior is becoming much less popular these days, as it uses unique constitutive surfaces to represent unsaturated soil behavior. This approach is essentially a nonlinear elastic formation and cannot be used to explain complex stress-path dependency for unsaturated soils. In this paper, a modified state-surface approach (MSSA) is proposed to represent unsaturated soil behavior under isotropic stress conditions in which a conventional void-ratio state surface is considered to be made up of an elastic surface and a plastic hardening surface. The plastic hardening surface remains stationary at all times, whereas the elastic surface remains unchanged when the soil experiences elastic deformation and moves downward when there is plastic hardening occurrence. Using the MSSA, the loading–collapse (LC) and the suction increase (SI) yield curves in the Barcelona basic model (BBM) are derived. The prediction of three typical cases of soils under isotropic conditions and experimental results using the proposed approach confirmed its feasibility, simplicity, and potential for the study of unsaturated soil behavior.


2014 ◽  
Vol 580-583 ◽  
pp. 312-315
Author(s):  
Hui Mei Zhang ◽  
Xiang Miao Xie ◽  
Geng She Yang

From the feature of rock micro-unit failure obeys Poisson random distribution, the damage softening statistical constitutive of was established under true triaxial confinement based on D-P criterion, so the impact of the intermediate principal stress on rock deformation and failure was considered in theory, and the actual engineering rock complex stress path evolution was reflected more realistically. Furthermore, according to the geometrical conditions of stress-strain relationship, the theoretical relationship between constitutive model parameters and the stress-strain curve characteristic parameters during the process of rock softening and deforming, which enhance the adaptability of the model. Finally, the rationality of the model verified by the measured data.


2019 ◽  
Vol 218 ◽  
pp. 106577 ◽  
Author(s):  
Kang Peng ◽  
Yunqiang Wang ◽  
Quanle Zou ◽  
Zhaopeng Liu ◽  
Junhui Mou

2019 ◽  
Vol 92 ◽  
pp. 09004 ◽  
Author(s):  
Zenon Szypcio

The influence of particle breakage on soil behaviour is important from theoretical and practical perspectives. Particle breakage changes the internal energy in two ways. First, internal energy is consumed for particle crushing and second, the internal energy changes because of additional volumetric strain caused by particle crushing. These two effects may be quantified by use of Frictional State Theory. The analysed drained triaxial compression tests of Toyoura sand, gravel and Dog's Bay sand at different stress level and stress path revealed that the effect of particle breakage is a function of soil gradation, strength of soil grains, stress level and stress path.


2019 ◽  
Vol 19 (12) ◽  
pp. 04019124 ◽  
Author(s):  
Yufeng Jia ◽  
Bin Xu ◽  
Shichun Chi ◽  
Biao Xiang ◽  
Dai Xiao ◽  
...  

2012 ◽  
Vol 49 (3) ◽  
pp. 311-322 ◽  
Author(s):  
Mahnoosh Biglari ◽  
Anna d’Onofrio ◽  
Claudio Mancuso ◽  
Mohammad Kazem Jafari ◽  
Ali Shafiee ◽  
...  

An experimental study has been carried out to investigate the effects of isotropic compression, wetting, and drying on the initial shear stiffness of Zenoz kaolin, an unsaturated lean clay, both in normally consolidated and overconsolidated conditions. The proposed study was conducted using fixed–free resonant column – torsional shear (RCTS). Specimens were compacted using the undercompaction technique. Initial shear stiffness was measured almost continuously along complex stress paths including (i) an initial equalization stage to a suction value of 0, 50, 150, and 300 kPa; (ii) an isotropic compression stage at constant suction, up to a net stress high enough to move the loading collapse line; (iii) an isotropic unloading stage at constant suction; (iv) a wetting and (or) drying path. The mentioned stress path allowed elimination or determination of the overconsolidation effect on the initial shear stiffness measured. The behavior observed is qualitatively similar to that of saturated soil, while wetting data clearly indicate that G0 depends significantly on volumetric behavior. In normally consolidated samples where wetting is accompanied by collapse, reduction in suction has no remarkable effect on G0. Conversely, in overconsolidated samples G0 reduces significantly as suction decreases.


2020 ◽  
Vol 2 (105) ◽  
pp. 56-64
Author(s):  
P. Lin ◽  
Z.-x. Li ◽  
A. Garg ◽  
J.S. Yadav

Purpose: The soil’s anisotropy induced by stress (i.e. stress induced anisotropy) has an important effect on the behavior of soil. This paper focuses on analyzing the anisotropy of remolded Shantou soft clay under compression stress path. Design/methodology/approach: Experiments were executed by using three axle experimental instruments. The data obtained from the plain strain tests were analyzed and the relationship between stress and strain was calculated by using the modified Duncan- Chang and Lade-Duncan models. The models were modified under the condition of plain strain and cohesion. Findings: It was concluded that in complex stress path conditions, the conventional triaxial tests may not fully reflect the actual stress of soil and its response in the Duncan-Chang and Lade-Duncan models. Research limitations/implications: The formulation of Mohr-Coulomb failure criterion in the plasticity framework is quite diffcult. As a result, dilatancy cannot be described. The properties of soil in unload or drained conditions remain to be part of further investigated. Practical implications: Based upon the two stiffness parameters, the modified Duncan- Chang model has captured the soil behaviour in a very conformable way and is recommened for practical modeling. These constitutive models of soil are widely used in the numerical analyses of soil structure such as embankments. Originality/value: Duncan-Chang and Lade-Duncan models widely used in engineering practices are modes based on conventional triaxial cases. Both models have have some inherent limitations to represent the stress-strain characteristics of soils, such as shear-induced dilatancy and stress path dependency and required corrections. In this investigation, the tests are carried out in undrained conditions. It is related to the properties of soil in load conditions.


2012 ◽  
Vol 256-259 ◽  
pp. 211-214
Author(s):  
Bao Yun Zhao ◽  
Ke Shan Zhu

Since rock masses are not a true continuous, homogeneous, isotropic and linear-elastic (CHILE) continuum, the loading and unloading behaviors differ greatly from each other. Professor Ha Qiulin and his co-workers have demonstrated that strength and deformational characteristics, initial rock stresses, scale effects, creep, deformation and fracture patterns are quite different and stress path dependence is particularly emphasized. As engineering unloading of the rock mass is essentially of a dynamic nature by excavation, we will first discuss the excavation process and related stabilization techniques. For the complex stress and deformation conditions around the excavated boundaries, it seems rational to define an excavation disturbed zone (EDZ) as in the last decades. In tunnel excavation, temperature and ventilation effects should be also taken into account. Space-and-time dependence on tunnel behaviors is important. Finally, further research topics are discussed.


2021 ◽  
Vol 249 ◽  
pp. 07001
Author(s):  
James Leak ◽  
Daniel Barreto ◽  
Vasiliki Dimitriadi ◽  
Emoke Imre

It is well recognised that particle breakage in granular materials is affected by stress level, stress path, initial density, and particle size distribution (PSD), amongst others. Furthermore, it has been shown that breakage has a significant influence on the stress-strain behaviour of soils. This paper compares a commonly used breakage parameter with grading entropy coordinates. Such coordinates enable for the representation of any PSD as a single point in a Cartesian coordinate plane. Hence, the evolution of PSD changes may be easily tracked. This paper aims to demonstrate that grading entropy coordinates are as (or more) effective than other breakage parameters, whilst providing additional insight. On the basis of limited data it is shown that grading entropy coordinates are able to capture the dependence of breakage on stress level, stress path and initial PSD.


Sign in / Sign up

Export Citation Format

Share Document