scholarly journals Effect of Pore–Fluid Chemistry on the Undrained Shear Strength of Xanthan Gum Biopolymer-Treated Clays

2021 ◽  
Vol 147 (11) ◽  
pp. 06021013
Author(s):  
Ilhan Chang ◽  
Yeong-Man Kwon ◽  
Gye-Chun Cho
2021 ◽  
Vol 13 (21) ◽  
pp. 11741
Author(s):  
Jongmuk Won ◽  
Junghee Park ◽  
Junki Kim ◽  
Junbong Jang

The current classification of clayey soils does not entail information of pore fluid chemistry and particle size less than 75 µm. However, the pore fluid chemistry and particle size (at given mineralogy) are critical in the plasticity of clayey soils because of their impact on negative charge density. Therefore, this study extensively discusses the description of clay with respect to mineralogy, particle sizes, and pore fluid chemistry based on liquid and plastic limits of kaolinite, illite, and bentonite, and estimates undrained shear strength from the observed liquid limits. The liquid limits and undrained shear strength estimated from the observed liquid limits as a function of mineralogy (clay type), particle size, and ionic concentration reveal the need of incorporating pore fluid chemistry and particle size into the fines classification system. Furthermore, multiple linear regression models developed in this study demonstrate the importance of particle size and ionic concentration in predicting the liquid limit of clayey soils. This study also discusses the need for a comprehensive understanding of fines classification for proper interpretation of natural phenomena and engineering applications for fine-grained sediments.


2019 ◽  
Vol 56 (8) ◽  
pp. 1206-1213 ◽  
Author(s):  
Ilhan Chang ◽  
Yeong-Man Kwon ◽  
Jooyoung Im ◽  
Gye-Chun Cho

Biopolymer–soil technology is currently recognized as an environmentally friendly soil improvement method for geotechnical engineering practices. However, concerns exist regarding biopolymer fine-soil applications because the performance of biopolymers is based on an electrical interaction with clay or a pore fluid. Thus, the effect of water content and pore-fluid chemistry on biopolymer behavior in soil must first be clarified in terms of biopolymer applications. In this study, the liquid limits of xanthan gum biopolymer–treated clay–sand mixtures (clayey silt, kaolinite, montmorillonite, and sand) were obtained using three chemically distinct pore fluids (deionized water, 2 mol/L NaCl brine, and kerosene). Xanthan gum has contrary effects to the soil consistency, where the liquid limit can decrease via xanthan gum–induced particle aggregation or increase due to xanthan gum hydrogel formation. The clay-mineral type governed the xanthan gum behavior in the deionized water, while the pore-fluid chemistry governed the xanthan gum behavior in the brine and the kerosene.


1993 ◽  
Vol 30 (6) ◽  
pp. 920-934 ◽  
Author(s):  
S.L. Barbour ◽  
N. Yang

Natural Ca-montmorillonite clay soils or engineered clay barriers in western Canada are often used to contain brine generated from the surface disposal of potash tailings or from drilling activities associated with the oil and gas industry. The performance of these barriers has ranged from excellent to poor. The influence of salt brines on the geotechnical properties of these soils has been recognized as a potentially important factor for some time. It has been well documented in the literature that the behavior of clayey soils is strongly influenced by physicochemical interactions between clay particles and pore-fluid chemistry; consequently, the properties of these soils are sensitive to changes in the electrolyte concentration of the pore fluid. An increase in the concentration of the pore fluid to the levels of a concentrated brine can cause significant changes in the geotechnical properties of the soil. In this paper, the impact of brine contamination on the geotechnical properties of two Ca-montmorillonitic clayey soils of glacial origin from western Canada is reviewed. The influence of clay–brine interactions on the index properties (liquid limit, plastic limit, plastic index, mineralogy, density, grain size, and compaction characteristics), mechanical properties (volume change and shear strength), and hydraulic properties (hydraulic conductivity) is described. A quantitative explanation for the changes that occur in the hydraulic and mechanical properties of these soils as a result of brine permeation is also provided. This explanation relates the changes in pore-fluid chemistry to changes in an effective physicochemical stress state. This approach may be used to predict the changes in hydraulic conductivity, volume, or shear strength of a clayey soil as a result of brine contamination. Key words : clay–brine interactions, diffuse double layer, hydraulic conductivity, soil structure, physicochemical.


Sign in / Sign up

Export Citation Format

Share Document