Pore Fluid Chemistry and Aging Effects on Swelling, Shear Strength, and Pore Size Distribution Behavior of Soils

Author(s):  
Emel Çakar ◽  
Hasan Firat Pulat ◽  
Yeliz Yükselen Aksoy
1990 ◽  
Vol 180 ◽  
Author(s):  
Douglas M. Smith ◽  
Pamela J. Davis ◽  
C. Jeffrey Brinker

ABSTRACTThe use of NMR relaxation measurements for the in-situ study of pore structure evolution during gel aging and drying is illustrated. The change in the pore size distribution and surface area of both wet and dried gels is examined as a function of aging conditions including temporal aging, thermal aging, changing pH, and changing pore fluid. The effect of pore fluid pH on dissolution/reprecipitation in ordered packings of monodisperse silica spheres is also examined as a model system for particulate gels. As expected, the pore size distribution narrows with increasing time of treatment in high pH pore fluids. Interpretation of high pH results for the wet state is complicated by a microporous layer which forms on colloidal silica resulting in significantly larger wet surface area as compared to the final dried material. Narrowing of the pore size distribution, which is of interest for maximizing drying rates, is maximized in the least time by using either high pH or repeated ethanol washes for the base-catalyzed gel (B2) used.


2021 ◽  
Vol 13 (21) ◽  
pp. 11741
Author(s):  
Jongmuk Won ◽  
Junghee Park ◽  
Junki Kim ◽  
Junbong Jang

The current classification of clayey soils does not entail information of pore fluid chemistry and particle size less than 75 µm. However, the pore fluid chemistry and particle size (at given mineralogy) are critical in the plasticity of clayey soils because of their impact on negative charge density. Therefore, this study extensively discusses the description of clay with respect to mineralogy, particle sizes, and pore fluid chemistry based on liquid and plastic limits of kaolinite, illite, and bentonite, and estimates undrained shear strength from the observed liquid limits. The liquid limits and undrained shear strength estimated from the observed liquid limits as a function of mineralogy (clay type), particle size, and ionic concentration reveal the need of incorporating pore fluid chemistry and particle size into the fines classification system. Furthermore, multiple linear regression models developed in this study demonstrate the importance of particle size and ionic concentration in predicting the liquid limit of clayey soils. This study also discusses the need for a comprehensive understanding of fines classification for proper interpretation of natural phenomena and engineering applications for fine-grained sediments.


2016 ◽  
Vol 53 (6) ◽  
pp. 909-917 ◽  
Author(s):  
You Gao ◽  
De’an Sun ◽  
Annan Zhou

The effect of different specimen preparation methods (compaction, reconstitution) on the hydromechanical behaviour and microstructure of soil was studied through a series of soil-water retention tests, triaxial tests, and mercury intrusion porosimetry (MIP) tests on an unsaturated clayey silt. Key findings from this experimental study include the following. (i) The air-entry value of the reconstituted specimen is higher than that of the compacted specimen with the same initial void ratio. (ii) The reconstituted specimen exhibits a unimodal pore-size distribution and the compacted specimen exhibits a bimodal pore-size distribution, according to results of the MIP tests. (iii) The soil-water characteristic curves and residual gravimetric water content of compacted and reconstituted specimens are almost the same in the high suction range. (iv) The void ratio of a reconstituted specimen decreases sharply with increasing suction value under an isotropic net stress (such as 20 kPa), while the void ratio of a compacted specimen shows a small change for the same suction change process. (v) Under the same net confining pressure, the shear strength of both compacted and reconstituted specimens increases with the suction increase. The shear strength of the reconstituted specimen is higher than that of the compacted specimen with the same density under the same suction and net confining pressure.


1993 ◽  
Vol 30 (6) ◽  
pp. 920-934 ◽  
Author(s):  
S.L. Barbour ◽  
N. Yang

Natural Ca-montmorillonite clay soils or engineered clay barriers in western Canada are often used to contain brine generated from the surface disposal of potash tailings or from drilling activities associated with the oil and gas industry. The performance of these barriers has ranged from excellent to poor. The influence of salt brines on the geotechnical properties of these soils has been recognized as a potentially important factor for some time. It has been well documented in the literature that the behavior of clayey soils is strongly influenced by physicochemical interactions between clay particles and pore-fluid chemistry; consequently, the properties of these soils are sensitive to changes in the electrolyte concentration of the pore fluid. An increase in the concentration of the pore fluid to the levels of a concentrated brine can cause significant changes in the geotechnical properties of the soil. In this paper, the impact of brine contamination on the geotechnical properties of two Ca-montmorillonitic clayey soils of glacial origin from western Canada is reviewed. The influence of clay–brine interactions on the index properties (liquid limit, plastic limit, plastic index, mineralogy, density, grain size, and compaction characteristics), mechanical properties (volume change and shear strength), and hydraulic properties (hydraulic conductivity) is described. A quantitative explanation for the changes that occur in the hydraulic and mechanical properties of these soils as a result of brine permeation is also provided. This explanation relates the changes in pore-fluid chemistry to changes in an effective physicochemical stress state. This approach may be used to predict the changes in hydraulic conductivity, volume, or shear strength of a clayey soil as a result of brine contamination. Key words : clay–brine interactions, diffuse double layer, hydraulic conductivity, soil structure, physicochemical.


2019 ◽  
Author(s):  
Paul Iacomi ◽  
Philip L. Llewellyn

Material characterisation through adsorption is a widely-used laboratory technique. The isotherms obtained through volumetric or gravimetric experiments impart insight through their features but can also be analysed to determine material characteristics such as specific surface area, pore size distribution, surface energetics, or used for predicting mixture adsorption. The pyGAPS (python General Adsorption Processing Suite) framework was developed to address the need for high-throughput processing of such adsorption data, independent of the origin, while also being capable of presenting individual results in a user-friendly manner. It contains many common characterisation methods such as: BET and Langmuir surface area, t and α plots, pore size distribution calculations (BJH, Dollimore-Heal, Horvath-Kawazoe, DFT/NLDFT kernel fitting), isosteric heat calculations, IAST calculations, isotherm modelling and more, as well as the ability to import and store data from Excel, CSV, JSON and sqlite databases. In this work, a description of the capabilities of pyGAPS is presented. The code is then be used in two case studies: a routine characterisation of a UiO-66(Zr) sample and in the processing of an adsorption dataset of a commercial carbon (Takeda 5A) for applications in gas separation.


Sign in / Sign up

Export Citation Format

Share Document