Closure to “Predicting Peak Discharge from Gradually Breached Embankment Dam” by David C. Froehlich

2017 ◽  
Vol 22 (8) ◽  
pp. 07017008 ◽  
Author(s):  
David C. Froehlich
2016 ◽  
Vol 30 (20) ◽  
pp. 3682-3691 ◽  
Author(s):  
Bo Wang ◽  
Yunliang Chen ◽  
Chao Wu ◽  
Jianhua Dong ◽  
Xiao Ma ◽  
...  

2020 ◽  
Vol 12 (24) ◽  
pp. 4183
Author(s):  
Emmanouil Andreadakis ◽  
Michalis Diakakis ◽  
Emmanuel Vassilakis ◽  
Georgios Deligiannakis ◽  
Antonis Antoniadis ◽  
...  

The spatial and temporal scale of flash flood occurrence provides limited opportunities for observations and measurements using conventional monitoring networks, turning the focus to event-based, post-disaster studies. Post-flood surveys exploit field evidence to make indirect discharge estimations, aiming to improve our understanding of hydrological response dynamics under extreme meteorological forcing. However, discharge estimations are associated with demanding fieldwork aiming to record in small timeframes delicate data and data prone-to-be-lost and achieve the desired accuracy in measurements to minimize various uncertainties of the process. In this work, we explore the potential of unmanned aerial systems (UAS) technology, in combination with the Structure for Motion (SfM) and optical granulometry techniques in peak discharge estimations. We compare the results of the UAS-aided discharge estimations to estimates derived from differential Global Navigation Satellite System (d-GNSS) surveys and hydrologic modelling. The application in the catchment of the Soures torrent in Greece, after a catastrophic flood, shows that the UAS-aided method determined peak discharge with accuracy, providing very similar values compared to the ones estimated by the established traditional approach. The technique proved to be particularly effective, providing flexibility in terms of resources and timing, although there are certain limitations to its applicability, related mostly to the optical granulometry as well as the condition of the channel. The application highlighted important advantages and certain weaknesses of these emerging tools in indirect discharge estimations, which we discuss in detail.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1042
Author(s):  
Andrey Kalugin

The purpose of the study was to analyze the formation conditions of catastrophic floods in the Iya River basin over the observation period, as well as a long-term forecast of the impacts of future climate change on the characteristics of the high flow in the 21st century. The semi-distributed process-based Ecological Model for Applied Geophysics (ECOMAG) was applied to the Iya River basin. Successful model testing results were obtained for daily discharge, annual peak discharge, and discharges exceeding the critical water level threshold over the multiyear period of 1970–2019. Modeling of the high flow of the Iya River was carried out according to a Kling–Gupta efficiency (KGE) of 0.91, a percent bias (PBIAS) of −1%, and a ratio of the root mean square error to the standard deviation of measured data (RSR) of 0.41. The preflood coefficient of water-saturated soil and the runoff coefficient of flood-forming precipitation in the Iya River basin were calculated in 1980, 1984, 2006, and 2019. Possible changes in the characteristics of high flow over summers in the 21st century were calculated using the atmosphere–ocean general circulation model (AOGCM) and the Hadley Centre Global Environment Model version 2-Earth System (HadGEM2-ES) as the boundary conditions in the runoff generation model. Anomalies in values were estimated for the middle and end of the current century relative to the observed runoff over the period 1990–2019. According to various Representative Concentration Pathways (RCP-scenarios) of the future climate in the Iya River basin, there will be less change in the annual peak discharge or precipitation and more change in the hazardous flow and its duration, exceeding the critical water level threshold, at which residential buildings are flooded.


Sign in / Sign up

Export Citation Format

Share Document