Experimental Investigations on the Residual Strain Behavior of a Rockfill Material Subjected to Dynamic Loading

2017 ◽  
Vol 29 (5) ◽  
pp. 04016278 ◽  
Author(s):  
Zhongzhi Fu ◽  
Shengshui Chen ◽  
Huaqiang Han
1974 ◽  
Vol 18 (02) ◽  
pp. 113-126
Author(s):  
J. Pattabiraman ◽  
V. Ramamurti ◽  
D. V. Reddy

The purpose of this survey is to give a review of the methods and results of analytical and experimental investigations for stress concentrations in thin elastic shells subjected to static and dynamic loading. The increasing use of higher-strength materials in the design of pressure vessels, aircraft, ships, and nuclear reactors with high reliability necessitates more precise analyses in the regions of cutouts and concentrated loads.


2018 ◽  
Vol 183 ◽  
pp. 02056
Author(s):  
Martin Rund ◽  
Martin Mašek ◽  
Jan Džugan ◽  
Pavel Konopík ◽  
Jiøí Janovec

The presented study deals with the FEM simulation of dynamic behaviour of U-profile crash under three point bent loading conditions verified by experimental investigations. The material ductile damage behaviour under wide strain rate region covering 0.001 – 1 000 s-1 was experimentally determined with the use of standard and micro tensile tests (M-TT). DIC systems were used for strain field measurements under quasi-static and dynamic loading conditions. Based on these experimental data, material model considering ductile damage was established in Abaqus/Explicit code. Additionally, also metallographic investigations were performed for the fracture behaviour description.


2016 ◽  
Vol 75 (3) ◽  
Author(s):  
Shuang Zhang ◽  
Chun-an Tang ◽  
Pan Hu ◽  
Xiang-dong Zhang ◽  
Zhe-cheng Zhang

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zheng Zuo ◽  
Guangqing Yang ◽  
He Wang ◽  
Zhijie Wang

This paper describes a series of laboratory pullout tests that were performed to investigate the pullout behavior of high-density polyethylene (HDPE) uniaxial geogrid subjected to static and dynamic loading. Pullout tests were conducted on HDPE geogrid reinforced coarse sand under normal static loading (60–300 kPa), dynamic loading with different amplitudes (20, 40, and 60 kPa), and different frequencies (2, 4, and 6 Hz) by using the newly developed pullout apparatus. The results indicated that the pullout resistance of geogrid presented different growth patterns with the increase of normal loads under static loading. The amplitude and frequency both had significant effects on the interaction between reinforcement and soil, and the increment of the pullout resistance was 0.6 kN and 0.3 kN, respectively. The effect of dynamic loading on the soil-geogrid interface can be gradually equivalent to that of static loading corresponding to the balance position of dynamic loading with the increase of frequency compared with the static loading. The results of this study are helpful for the selection of the strength of the reinforcement in different locations and to simplify the study on the stress of reinforcement in reinforced soil structures under traffic loads.


Author(s):  
Sudeep M. Rao ◽  
Joshua Samuel ◽  
Sai S. Prakash ◽  
C. Jeffrey Brinker

Ambient pressure silica aerogel thin films have recently been prepared by exploiting reversible drying shrinkage caused by derivatization of the internal gel surface. Aerogels have porosities of upto 99.9% and due to the small size of the pores (few nanometers), large capillary stresses are produced in gels that are partially saturated with a wetting liquid. As a result of these capillary stresses, the flexible silica network undergoes strain which has been observed using environmental microscopy. This technique allows variation of the equilibrium vapor pressure and temperature, and a simultaneous monitoring of the deformation of the unconstrained film thickness. We have observed >600% deformation during the pore-filling and pore-emptying cycles. In this presentation, we discuss the unique stress-strain behavior of these films.Ref.: Sai S. Prakash, C. Jeffrey Brinker, Alan J. Hurd & Sudeep M. Rao, "Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shrinkage", Nature. Vol. 374, 30 March, 1995, 439-443.


Sign in / Sign up

Export Citation Format

Share Document