Pore and Solid Characterizations of Interfacial Transition Zone of Mortar Using Microcomputed Tomography Images

2021 ◽  
Vol 33 (12) ◽  
pp. 04021348
Author(s):  
Sang-Yeop Chung ◽  
Ji-Su Kim ◽  
Paul H. Kamm ◽  
Dietmar Stephan ◽  
Tong-Seok Han ◽  
...  
Engineering ◽  
2021 ◽  
Author(s):  
Xinyue Wang ◽  
Sufen Dong ◽  
Zhenming Li ◽  
Baoguo Han ◽  
Jinping Ou

Proceedings ◽  
2019 ◽  
Vol 34 (1) ◽  
pp. 1 ◽  
Author(s):  
Adediran ◽  
Yliniemi ◽  
Illikainen

Alkali-activated materials (AAMs) are an environmentally friendly option for Portland cement mortars and concretes. Many industrial residues such as blast furnace slag and coal fly ash have been extensively studied and applied as AAM precursors but much less focus has been on the use of fayalite slags. Water-cooled fayalite slag comes in granular form, which is then milled into fine powder (d50 ~10 microns) prior to its alkali activation. In addition, the un-milled granular fayalite slag can be used as an aggregate to replace sand in mortar. The alkaline solution utilized for the study was a mix of 10 M sodium hydroxide solution and commercial potassium silicate solution. A liquid to solid ratio of 0.15 was held constant for all the mixes. The particle size distributions of the binder and the aggregates were optimized, and the microstructure and chemical composition of the interfacial transition zone (ITZ) was studied using scanning electron microscope coupled with energy dispersive X-ray spectroscopy. ITZ is a region that exists between the aggregate and the binder and this can influence the mechanical and transport properties of the construction materials. The results showed that the mechanical properties of mortar having fayalite slag as aggregate and binder was significantly higher than one with standard sand as aggregate. No distinct ITZ was found in the samples with fayalite slag as aggregate. The outer rim of the fayalite slag aggregate participated in the hardening reaction and this significantly contributed to the bonding and microstructural properties of the mortar samples. In contrast, an ITZ was observed in mortar samples with standard sand aggregates, which contributed to its lower strength.


2019 ◽  
Vol 6 (12) ◽  
pp. 190813
Author(s):  
Bin Lei ◽  
Huajian Liu ◽  
Zhimin Yao ◽  
Zhuo Tang

At present, many modification methods have been proposed to improve the performance of recycled aggregate concrete (RAC). In this study, tests on the compressive strength and damping properties of modified RAC with the addition of different proportions of recycled coarse aggregate (RCA) (0, 50, 100%), rubber powder (10, 15, 20%), steel fibre (5, 7.5, 10%) and fly ash (15, 20, 5%) are carried out. To elucidate the effect of the modification method on the interfacial transition zone (ITZ) performance of RAC, model ITZ specimens are used for push-out tests. The results show that when the replacement rate of RCA reaches 100%, the loss factor of the RAC is 6.0% higher than that of natural aggregate concrete; however, the compressive strength of the RAC decreases by 22.6%. With the addition of 20% rubber powder, the damping capacity of the modified RAC increases by 213.7%, while the compressive strength of the modified RAC decreases by 47.5%. However, with the addition of steel fibre and fly ash, both the compressive strength and loss factor of the RAC specimens increase. With a steel fibre content of 10 wt%, the compressive strength and loss factor of the RAC increase by 21.9% and 15.2%, respectively. With a fly ash content of 25 wt%, the compressive strength and loss factor of the RAC increase by 8.6% and 6.9%, respectively. This demonstrates that steel fibre and fly ash are effective in improving both the damping properties and compressive strength of RAC, and steel fibre is more effective than fly ash. Two methods were used for modification of the RAC: reinforcing the RCA through impregnation with a 0.5% polyvinyl alcohol (PVA) emulsion and nano-SiO 2 solution, and strengthening the RAC integrally through the addition of fly ash as an admixture. Both of these techniques can improve the ITZ bond strength between the RAC and new mortar. Replacing 10% of the cement with fly ash in the new mortar is shown to be the best method to improve the ITZ strength.


2018 ◽  
Vol 192 ◽  
pp. 28-37 ◽  
Author(s):  
Dandan Sun ◽  
Kai Wu ◽  
Huisheng Shi ◽  
Lintao Zhang ◽  
Lihai Zhang

Sign in / Sign up

Export Citation Format

Share Document