Effect of Mineral Fillers on Oxidative Aging of Epoxy Bitumen

Author(s):  
Ruxin Jing ◽  
Panos Apostolidis ◽  
Xueyan Liu ◽  
Sandra Erkens ◽  
Tom Scarpas
2019 ◽  
Vol 768 (3) ◽  
pp. 57-63
Author(s):  
A.A. ASKADSKII ◽  
◽  
A.V. MATSEEVICH ◽  
K.S. PIMINOVA ◽  
O.A. GORBACHEVA ◽  
...  

2021 ◽  
Vol 279 ◽  
pp. 121298
Author(s):  
Yi Yang ◽  
Yixuan Wang ◽  
Jing Cao ◽  
Zengguang Xu ◽  
Yanlong Li ◽  
...  

2020 ◽  
Author(s):  
I. A. Zagidullina ◽  
M. F. Galikhanov ◽  
R. I. Kamalova ◽  
G. F. Sharipova ◽  
R. Z. Khairullin

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1243
Author(s):  
Fan Zhang ◽  
Yufei Cao ◽  
Xuan Liu ◽  
Huan Xu ◽  
Diannan Lu ◽  
...  

Understanding the aging mechanism of polypropylene (PP) is fundamental for the fabrication and application of PP-based materials. In this paper, we present our study in which we first used reactive molecular dynamics (RMD) simulations to explore the thermo-oxidative aging of PP in the presence of acetic acid or acetone. We studied the effects of temperature and oxygen on the aging process and discussed the formation pathways of typical small molecule products (H2, CO, CO2, CH4, C2H4, and C2H6). The effect of two infection agents, acetic acid and acetone, on the aging reaction was analyzed emphatically. The simulation results showed that acetone has a weak impact on accelerating the aging process, while acetic acid has a significant effect, consistent with previous experimental studies. By tracking the simulation trajectories, both acetic acid and acetone produced small active free radicals to further react with other fragment products, thus accelerating the aging process. The first reaction step of acetic acid is often the shedding of the H atom on the hydroxyl group, while the reaction of acetone is often the shedding of the H atom or the methyl. The latter requires higher energy at lower temperatures. This is why the acceleration effect of acetone for the thermo-oxidative aging of PP was not so significant compared to acetic acid in the experimental temperature (383.15 K).


2019 ◽  
Vol 974 ◽  
pp. 267-272
Author(s):  
Ludmila A. Suleymanova ◽  
Inna A. Pogorelova ◽  
Andrey V. Kocherzhenko ◽  
Igor S. Ryabchevsky

The authors investigated the possibility of increasing the basic operational properties of polyurethane foam by introducing such mineral fillers as clay, loam, sand, and others, including man-made ones. For the first time polyurethane foam filling with industrial waste from mining and processing plants, in particular, wet magnetic separation of ferruginous quartzites (hereinafter - tailings) was proposed. The resulting insulating composites with improved performance properties will expand the use range of the material in construction.


2013 ◽  
Vol 752 ◽  
pp. 209-216 ◽  
Author(s):  
Róbert Géber ◽  
László A. Gömze

The present research work deals with the examination and rheological modelling of flow properties of asphalt mastics which are the most important components of asphalt concretes. Asphalt mastics are mixtures of fine grained mineral filler particles (d<0,063 mm) and bitumen, having a stabilizing role in asphalt mixtures and largely determining the cohesion between mineral particles and bitumen. During our examinations two types of mineral fillers – limestone and dolomite – as well as standard bitumen were tested, which are extensively used in Hungarian road construction. Asphalt mastic mixtures were prepared out of these materials and they were tested with dynamic shear rheometer (DSR). According to the test results, rheological models of mastics were determined. It has been established that at different test temperatures and shear rate ranges asphalt mastics behave as Herschel-Bulkley and Bingham-type materials.


Sign in / Sign up

Export Citation Format

Share Document