Ultimate Strength of Reinforced Concrete Circular Members Subjected to Axial Force, Bending Moment, and Shear Force

2013 ◽  
Vol 139 (6) ◽  
pp. 915-928 ◽  
Author(s):  
P. P. Rossi ◽  
A. Recupero
2016 ◽  
Vol 129 ◽  
pp. 67-80 ◽  
Author(s):  
Pedro Dias Simão ◽  
Helena Barros ◽  
Carla Costa Ferreira ◽  
Tatiana Marques

2013 ◽  
Vol 4 (4) ◽  
pp. 133-144 ◽  
Author(s):  
Šarūnas Kelpša ◽  
Mindaugas Augonis

When the various reinforced concrete structures are designed according to EC2 and STR, the difference of calculation results, is quite significant. In this article the calculations of shear strength of bending reinforced concrete elements are investigated according to these standards. The comparison of such calculations is also significant in the sense that the shear strength calculations are carried out according to different principles. The STR regulations are based on work of the shear reinforcement crossing the oblique section and the compressed concrete at the end of the section. In this case, at the supporting zone, the external bending moment and shear force should be in equilibrium with the internal forces in reinforcement and compressed concrete, i.e., the cross section must be checked not only from the external shear force, but also from bending moment. In EC2 standard, the shear strengths are calculated according to simplified truss model, which consists of the tension shear reinforcement bars and compressed concrete struts. The bending moment is not estimated. After calculation analysis of these two methods the relationships between shear strength and various element parameters are presented. The elements reinforced with stirrups and bends are investigated additionally because in EC2 this case is not presented. According to EC2 the simplified truss model solution depends on the compression strut angle value θ, which is limited in certain interval. Since the component of tension reinforcement bar directly depends on the angle θ and the component of compression strut depends on it conversely, then exists some value θ when the both components are equal. So the angle θ can be found when such two components will be equated. However, such calculation of angle θ became complicated if the load is uniform, because then the components of tension bar are estimated not in support cross section but in cross section that are displaced by distance d. So, the cube equation should be solved. For simplification of such solution the graphical method to find out the angle θ and the shear strength are presented. In these graphics the intersection point of two components (shear reinforcement and concrete) curves describes the shear strength of element. Santrauka Straipsnyje apžvelgtos ir palygintos STR ir EC2 įstrižojo pjūvio stiprumo skaičiavimo metodikos stačiakampio skerspjūvio elementams. Normatyve neapibrėžtas EC2 metodikos santvaros modelio spyrių posvyrio kampo skaičiavimas, lemiantis galutinį įstrižojo pjūvio stiprumą. Straipsnyje pateikiamos kampo θ apskaičiavimo lygtys, atsižvelgiant į apkrovimo pobūdį. Norint supaprastinti pateiktų lygčių sprendimą siūlomas grafoanalitinis sprendimo būdas, pritaikant papildomus koeficientus. EC2 neapibrėžia skaičiavimo išraiškų, kai skersinis armavimas yra apkabos ir atlankos. Minėtos išraiškos suformuluotos ir pateiktos straipsnyje. Nustačius EC2 metodikos dėsningumus siūlomas alternatyvus apytikslis skaičiavimo būdas atlankomis ir apkabomis armuotiems elementams. Straipsnyje apžvelgtos abi – STR ir EC2 – metodikos, išskiriant pagrindinius skirtumus ir dėsningumus.


SPE Journal ◽  
2014 ◽  
Vol 20 (02) ◽  
pp. 405-416 ◽  
Author(s):  
Wenjun Huang ◽  
Deli Gao ◽  
Fengwu Liu

Summary A new buckling equation in horizontal wells is derived on the basis of the general bending and twisting theory of rods. The boundary conditions of a long tubular string are divided into two categories: the sum of the virtual work of bending moment and shear force at the ends of tubular strings is equal to zero, and the sum of the virtual work of bending moment and shear force at the ends is not equal to zero. Buckling solutions under different boundary conditions are obtained by solving the new buckling model. For the boundary conditions of the first category, the buckling solutions are identical with previous results. For the boundary conditions of the second category, the buckling solutions are different from the results under the boundary conditions of the first category. The results indicate that buckling behaviors depend on both the axial force and the boundary conditions. Compared with previous results, buckling solutions of the new model provide a more comprehensive description of tubular-buckling behaviors.


2015 ◽  
Vol 744-746 ◽  
pp. 1033-1036
Author(s):  
Zi Chang Shangguan ◽  
Shou Ju Li ◽  
Li Juan Cao ◽  
Hao Li

In order to simulate moment distribution on linings of tunnel excavated by shield, FEM-based procedure is proposed. According to geological data of tunnel excavated by shield, FEM model is performed, and the moment, axial force and shear force distributions on linings are computed. The maximum moment on segments decreases while Poisson’s ratio of soil materials touching to segments increases. The moment value and distribution vary with Young’s modulus of soil materials. The maximum positive moment on linings is approximately equal to the maximum negative moment.


2011 ◽  
Vol 94-96 ◽  
pp. 830-833 ◽  
Author(s):  
Dong Mei Zhao ◽  
Ying Xu Zhao ◽  
Yan Xia Ye

In this paper, the effect of the non-uniformity settlement of ground foundation on the upper frame structure is studied. It takes a four-story space frame structure with two spans as an example. The different pedestals are installed at the joint of column footing, which respectively form the fixed supported model and the elastic supported model. Basin shaped settlement is applied in each model. The result shows that the beams are principally suffered with the bending moment and the columns principally suffered with axial force, shear force and bending moment, and that the elastic support model has certain economy.


Sign in / Sign up

Export Citation Format

Share Document