Strut-and-Tie Model for Predicting the Shear Strength of Exterior Beam-Column Joints without Transverse Reinforcement

2022 ◽  
Vol 148 (2) ◽  
Author(s):  
Reza Mashhadi ◽  
Mohammad Ali Dastan Diznab ◽  
Fariborz M. Tehrani
2011 ◽  
Vol 243-249 ◽  
pp. 514-520
Author(s):  
Chun Yang ◽  
Ming Ji He ◽  
Jian Cai ◽  
Yan Sheng Huang ◽  
Yi Wu

Based on strut-and-tie model (STM) in deep beams, steel truss reinforced concrete (STRC) deep beam was developed. Experimental investigations of mechanical performances of STRC deep beams were carried out, and results show that STRC deep beam is of high ultimate bearing capacity, large rigidity and good ductility; Strut-and-tie force transference model is formed in STRC deep beams, and loads can be transferred in the shortest and direct way. Then Steel reinforced concrete (SRC) strut-and-tie model (SSTM) for determining the shear strength of STRC deep beams is proposed. The contribution of SRC diagonal strut, longitudinal reinforcements, stirrups and web reinforcements to the shear strength of STRC deep beams are determined with consideration of softened effects of concrete, and for safe consideration, superposition theory is employed for SRC struts. Computer programs are developed to calculate the shear strength of STRC deep beams and verified by experimental results.


2014 ◽  
Vol 931-932 ◽  
pp. 468-472
Author(s):  
Piyoros Tasenhod ◽  
Jaruek Teerawong

Shear strength prediction of simple deep reinforced concrete beams by method of strut-and-tie model is presented in this paper. The tested specimens were designed according to Appendix A of ACI 318-11 code with variations of shear span-to-effective depth ratios and ratios of horizontal and vertical crack-controlling reinforcement. Test results revealed that at the same shear span-to-effective depth ratio, the various crack-controlling reinforcements significantly influenced on strength reduction coefficients of strut and failure modes. When the shear span-to-effective depth ratios were increased, failure modes changed from splitting diagonal strut to flexural-shear failure. Based on the test results, the proposed model was compared with Appendix A of ACI 318-11code.


2018 ◽  
Vol 21 (1) ◽  
pp. 86
Author(s):  
Ahmed Faleh Al-Bayati

This paper presents a simple strut and tie model to calculate the shear strength of reinforced concrete deep beams. The proposed model assumes that the shear strength is the algebraic sum of three strength components: concrete diagonal strut, vertical stirrups, and horizontal web reinforcements. The contribution of each strength components was calibrated with the test results of 305 deep beams compiled from previous studies with wide range of geometrical and material properties. The predictions of the proposed model were compared with those of the current codes of practice (ACI-318-14 and ASHTOO 2014) and those of existing model in the literature. Comparisons revealed that the proposed model provided better predictions than other models. The mean of predicted strength to test of the proposed model, the ACI-318-14 model, the ASHTOO 2014 model were 0.98, 0.79, and 0.75, respectively. The corresponding standard deviations were 0.17, 0.28, and 0.49, respectively.


2011 ◽  
Vol 255-260 ◽  
pp. 89-93
Author(s):  
Ji Yang Wang ◽  
Yi Lin Sun ◽  
Masanobu Sakashita

A direct strut-and-tie model to calculate the ultimate shear strength of structural walls based on an interactive mechanical model (C.Y.Tang et al.) is presented. Two common failure modes, namely, diagonal splitting and concrete crushing, are examined in this paper. Ultimate shear strengths of structural walls are governed by both the transverse tensile stresses perpendicular to the diagonal strut, and the compressive stresses in the diagonal strut. Such proposed model is verified aganist three experimental case studies of structural walls. Generally, predictions by the proposed model are not only accurate and consistent in each case study, but also conservative.


2014 ◽  
Vol 41 (4) ◽  
pp. 304-314
Author(s):  
Michael Kuebler ◽  
Maria Anna Polak

This paper focuses on the effect of the transverse reinforcement in concrete poles and its influence on torsional strength in an effort to simplify the governing Canadian prestressed concrete pole code (CSA A14-07). The rationale behind the CSA code values for amount, spacing, and direction of the transverse reinforcement is not apparent. A testing program consisting of 14 concrete pole specimens were produced to investigate the torsional response. The specimens were divided into two groups with different tip diameters. Within each group the spacing and direction of the wound helical transverse reinforcement varied. Experimental cracking torque values were compared with calculated theoretical cracking torques from ACI 318, Eurocode 2, and various journal articles. The theoretical predictions were generally unconservative. Post-cracking behaviour was modelled using the Compression Field Theory (CFT) and Softened Truss Model (STM) for torsion. It was found that the CFT predicts the post-cracking response with reasonable accuracy. The failure mode in pure torsion is brittle and sudden, and the transverse reinforcement provides no post-cracking ductility. The primary function of the transverse reinforcement is to minimize the longitudinal precracking due to prestressing transfer forces. CSA A14 transverse reinforcement spacing requirements were compared against code minimum spacing requirements and a strut and tie model of the prestressing force transfer zone. Based on the strut and tie model of the transfer zone it was concluded that the CSA A14 helical reinforcement spacing values were insufficient to resist the transfer forces. New helical reinforcement spacing values were recommended to simplify the current CSA A14 code requirements. In addition concrete mix designs, prestressing levels, and wall thicknesses all have a large impact on torsional capacity and therefore quality assurance of these factors should be emphasized in CSA A14.


Sign in / Sign up

Export Citation Format

Share Document