Structural Properties of Tall Diagrid Buildings Using a Neural Dynamic Model for Design Optimization

2022 ◽  
Vol 148 (3) ◽  
Author(s):  
Alejandro Palacio-Betancur ◽  
Mariantonieta Gutierrez Soto
1998 ◽  
Vol 120 (1) ◽  
pp. 8-14 ◽  
Author(s):  
Marco A. Arteaga

Control design of flexible robot manipulators can take advantage of the structural properties of the model used to describe the robot dynamics. Many of these properties are physical characteristics of mechanical systems whereas others arise from the method employed to model the flexible manipulator. In this paper, the modeling of flexible-link robot manipulators on the basis of the Lagrange’s equations of motion combined with the assumed modes method is briefly discussed. Several notable properties of the dynamic model are presented and their impact on control design is underlined.


2017 ◽  
Vol 9 (1) ◽  
pp. 35-47 ◽  
Author(s):  
Mathis Richter ◽  
Jonas Lins ◽  
Gregor Schöner

2011 ◽  
Vol 133 (12) ◽  
Author(s):  
I. T. Watson ◽  
B. Gangadhara Prusty ◽  
J. Olsen ◽  
D. Farrell

The Thompson coupling is a relatively recent design of constant-velocity coupling, that is, principally based on the double Cardan mechanism. An extra mechanism comprising a spherical pantograph serves to align the intermediate shaft of this coupling and so maintains the constant velocity of the double Cardan mechanism, in a modular fashion. This technical note serves to introduce basic closed form expressions for the coupling’s geometry—which may then be used to derive linkage accelerations and dynamic forces. The expressions are derived using standard identities in spherical geometry. The resulting dynamic model then informs a basic conceptual design optimization, which object is intended to reduce induced driveline vibrations, when the coupling is articulated at nonzero angles of torque transmission.


Author(s):  
Kaibing Du ◽  
Yongjian Li ◽  
Shuangfu Suo ◽  
Yuming Wang

Noncontacting finger seals are new compliant seal in gas turbine engine sealing technology. Their potential hydrodynamic and hydrostatic lifting capabilities make them preferable to brush seals and contacting finger seals. The work concerns the mechanism of dynamic leakage of noncontacting finger seal, and a novel dynamic leakage analysis model is proposed. The model combines seal dynamic analysis and seal leakage analysis together to estimate seal dynamic performance through seal leakage. The nature of dynamic leakage performance affected by the change of seal–rotor clearance is revealed. Dynamic leakage increasing is mainly affected by ratio of friction force to finger stiffness, finger mass natural frequency, and rotor excitation amplitude. Results show that the leakage increasing caused by the rotor eccentricity is inevitable. In the design optimization of the noncontacting finger seal, the ratio of friction force to finger stiffness and the rotor excitation should be as small as possible, and the finger natural frequency should be as large as possible.


Sign in / Sign up

Export Citation Format

Share Document