Grouping Water-Demand Nodes by Similarity among Flow Paths in Water-Distribution Systems

2017 ◽  
Vol 143 (8) ◽  
pp. 04017033 ◽  
Author(s):  
Tian Qin ◽  
Dominic L. Boccelli
2005 ◽  
Vol 5 (1) ◽  
pp. 33-40 ◽  
Author(s):  
R. McKenzie ◽  
C. Seago

Considerable progress has been made over the past 10 years in the assessment and benchmarking of real losses in potable water distribution systems. Most of the advances have been based on the burst and background estimate (BABE) methodology, which was first developed in the mid-1990s by the UK water industry and has since been widely accepted and used in many parts of the world. Since the original BABE methodology was developed, several other key concepts have been added to the evergrowing list of water demand management tools. In particular, the infrastructure leakage index (ILI) and unavoidable annual real losses (UARL) introduced by A. Lambert, and the fixed area variable area discharge (FAVAD) theory by J. May, are now recognised as key “tools of the trade” in any water demand management assessment. One of the first main developments where the above-mentioned concepts were applied in practice to benchmark leakage was in South Africa, where the local Water Research Commission supported the production of the BENCHLEAK Model. This was basically the first comprehensive model to assess real losses in potable water distribution systems using the UARL and ILI concepts. The model was developed by one of the authors together with A. Lambert, and was soon followed by similar developments in Australia (BENCHLOSS) and New Zealand (BENCHLOSSNZ). Both models incorporated additions and enhancements to the original South African model, and were tailored to suit the local conditions in line with the clients' requirements. Similar developments took place in parallel by various leakage specialists, most notably in Brazil, Malaysia and Cyprus, to mention just a few of the similar initiatives. Each time a new model was developed, certain improvements were made and the “science” of leakage management and benchmarking was enhanced. Through the use of the different models and from discussions with various researchers from around the world, it has become clear that there is a genuine need for such models, and they are being readily accepted by clients in most areas. The discussions have also raised many questions concerning the derivation of the terms used to calculate the UARL and the ILI, and, to address these concerns a specialist group was created through the IWA to investigate the various issues. This paper will highlight the progress that has been made to date with regard to the key issues that have been raised by the task-team members, and recommendations based on the feedback that has been received from around the world. The paper will also present some of the results that have been obtained from different parts of the world to highlight both the progress and the problems associated with the assessment of real losses. The paper will conclude with a short description of several new models that have been developed and are in use, which demonstrate the latest improvements to an ongoing process to assess and benchmark real losses in water distribution systems.


2019 ◽  
Vol 41 (5) ◽  
pp. 544-560
Author(s):  
Tiago de VG Ferreira ◽  
Orestes M Goncalves

Over the years, researchers have been conducting studies to investigate the water consumption profile in buildings; these studies have contributed to the accumulation of knowledge regarding the correct sizing of hydraulic systems in buildings. In the context of the methods for the characterization of system demand or loading values, the procedures commonly employed to obtain the project flow rate were primarily proposed in the mid-20th century. These models require revision and adaptation to the current water consumption values. In recent years, certain researchers have proposed simulation models with an application focus on water distribution systems owing to the random and temporal behavior of water demand in this system type. In this study, a water-demand stochastic simulation model in residential buildings is proposed, which encompasses the behavioral modelling of users and their interaction with the system to improve the design process of water distribution systems. Therefore, geographical and population factors (quantity, distribution, and organization) were considered for the behavioral modelling of users; regarding the system modelling, aspects related to the hydraulic system were considered, such as the relation between system components, the type of sanitary appliance, and the number of available devices. Different simulations—with several different types of showers—were conducted using the proposed model. Comparing the flows obtained from the simulation and from the Brazilian standard, for all system components, the decrease in the project flow rate varied from 4% to 61%. In terms of material consumption regarding the pipe (PVC), the decrease varied from 25% to 63%. Practical application: When assessing potential designs for components in water distribution systems in buildings robust information is required for water demand across different time scales. The use of simulation models represents an important advance for the dimensioning process of these components, since it is possible to know a wider range of information about the system demand possibilities. The use of this type of model, as discussed in this article, will equip the designer with an enhanced decision making capacity.


Sign in / Sign up

Export Citation Format

Share Document