Cost-Effective Long-Term Monitoring Design for Intrinsic Bioremediation

WRPMD'99 ◽  
1999 ◽  
Author(s):  
P. Reed ◽  
B. Minsker ◽  
A. Valocchi
Author(s):  
Barbara S. Minsker ◽  
Charles Davis ◽  
David Dougherty ◽  
Gus Williams

2021 ◽  
Author(s):  
Karl Toland ◽  
Abhinav Prasad ◽  
Andreas Noack ◽  
Kristian Anastasiou ◽  
Richard Middlemiss ◽  
...  

<p>The manufacture and production of a high-sensitivity cost-effective gravimeter has the potential to change the methodology and efficiency of gravity measurements. Currently, the most common method to conduct a survey is by using a single gravimeter, usually costing tens of thousands of Dollars, with measurements taken at multiple locations to obtain the required data. The availability of a cost-effective gravimeter however would allow the user to install multiple gravimeters, at the same cost of a single gravimeter, to increase the efficiency of surveys and long-term monitoring.  </p><p> </p><p>Since the previous reporting on a low-drift relative MEMS gravimeter for multi-pixel imaging applications (Prasad, A. et al, EGU2020-18528), significant progress has been made in the development and assembly of the previously reported system. Field prototypes have been manufactured and undergone significant testing to investigate the stability and robustness of the system in preparation for the deployment of multiple devices as part of the gravity imager on Mount Etna. The device, known as Wee-g, has several key features which makes it an attractive prospect in the field of gravimetry. Examples of these features are that the Wee-g is small and portable with the ability to connect to the device remotely, can be powered through a mains connected power supply, or through portable batteries, weighs under 4kg, has a low power consumption during normal use of 5W, correct for tilt through manual adjustments or remotely through integrated stepper motors with a total tilt correction range of 5 degrees, the ability to read out tilt of the device through an inclinometer for either alignment or long term monitoring and numerous temperature sensors and heater servos to control the temperature of the MEMS to <1mK.</p><p> </p><p>This presentation aims to report on the progress that has been achieved in the development and manufacturing of the prototype devices, various testing of the devices under various laboratory conditions (such as the measurements of the Earth tides, and a relative measurement of gravity at various floor levels), as well as additional applications that are to be explored in 2021. </p>


2019 ◽  
Vol 165 ◽  
pp. 104940 ◽  
Author(s):  
Ernesto Serrano-Finetti ◽  
Carles Aliau-Bonet ◽  
Oscar López-Lapeña ◽  
Ramon Pallàs-Areny

2014 ◽  
Vol 95 (1) ◽  
pp. 147-155 ◽  
Author(s):  
Fred L. Moore ◽  
Eric A. Ray ◽  
Karen H. Rosenlof ◽  
James W. Elkins ◽  
Pieter Tans ◽  
...  

2019 ◽  
Vol 85 (14) ◽  
Author(s):  
Martin Bobal ◽  
Anna Kristina Witte ◽  
Patrick Mester ◽  
Susanne Fister ◽  
Dagmar Schoder ◽  
...  

ABSTRACT Detection of pathogens is crucial in food production areas. While it is well established, swabbing as a state-of-the-art sampling method offers several drawbacks with respect to yield, standardization, overall handling, and long-term monitoring. This led us to develop and evaluate a method that is easier to use at a lower cost and that should be at least as sensitive. After evaluating sundry promising materials, we tested text-marking paper stickers for their suitability to take up and release Listeria monocytogenes with their nonsticky paper side over a 14-day time period using quantitative PCR. The recovery rate was similar to that in previous studies using conventional swabs, and we also confirmed the feasibility of pooling besides resilience to cleansing and disinfection. In a proof-of-concept experiment that sampled several locations, such as door handles, the occurrences of L. monocytogenes and Escherichia coli were determined. The results suggest that the presented sticker system might offer a promising cost-effective alternative sampling system with improved handling characteristics. IMPORTANCE As a ubiquitous bacterium, Listeria monocytogenes has a propensity to enter food production areas inadvertently via fomites such as door handles and switches. While the bacterium might not be in direct contact with the food products, knowing the microbial status of the surroundings is essential for risk assessment. Our investigation into a novel quantitative PCR (qPCR)-based sampling system with the highest sensitivity and ability to monitor over long periods of time, yet based on paper, proved to be cost-effective and reasonably convenient to handle.


2021 ◽  
Author(s):  
◽  
Timothy Jones

<p>Monitoring marine ecosystems is essential for the conservation and management of marine biodiversity as it is central to the development of sustainable management practices and for assessing the effectiveness of the increasing number of marine reserves (MR) globally. Monitoring data are often collected in MRs to assess the state of natural marine systems in the absence of anthropogenic disturbance or to assess recovery of previously impacted species. In recent years, MR designation has attempted to move away from ad hoc approaches to MR establishment and towards using existing species distribution and abundance data to define protected areas. Given the logistics and cost of collecting biological data in the marine environment, effective methods are required to successfully demonstrate changes associated with MRs and to identify the spatial distribution of organisms and habitats for the planning of further MRs. The aim of this thesis was to identify effective protocols for the monitoring of fish and invertebrate species inside MRs in New Zealand, and to develop and apply methodologies to identify spatial distribution patterns relevant to marine spatial planning.  Using baseline data of fish and invertebrate species abundances for the Taputeranga MR I performed prospective power analyses to identify the most cost-effective monitoring approach for subsequent monitoring. Based on before-after-control-impact (BACI) tests the power to conclude statistically that abundances were higher at MR sites was low for even large simulated changes in abundance (two-fold or four-fold increases) for most species. Due to differences in baseline abundance and spatio-temporal variance terms, power varied considerably among species, highlighting the difficulty of monitoring all species to the same degree, whilst also remaining cost-effective. Furthermore, the results highlight the need for temporally replicated survey designs as “one-off” surveys had much lower power than those that were temporally replicated.  Longer term monitoring effectiveness was analysed using three long-term datasets from MRs in the South Island of New Zealand. I analysed the power of alternate underwater visual census (UVC) monitoring configurations to conclude statistically that there were increasing/decreasing trends in abundance, as well as the precision and accuracy of trend estimates. Overall even the highest replication designs considered had low power (< 80%) to conclude there was a non-zero trend even when simulated data represented trends equivalent to the population doubling or halving over ten years. The most cost-effective monitoring design varied among species and MRs, further highlighting that monitoring choices need to be location- and species-specific. A general finding, however, was that increasing the number of sites was almost always more beneficial than increasing the number of transects per site. Based on these results, I recommend that monitoring design planning focuses more specifically on assessments of precision and accuracy of estimated parameters, with less focus on power, as this places greater emphasis on interpreting monitoring data in terms of potential biological significance rather than testing for statistical significance.  Monitoring can never achieve complete coverage of large areas therefore methods for extrapolating or predicting species or habitats to un-surveyed locations are necessary for evaluating large-scale spatial distributions. To address this I used modelling techniques to identify the spatial variation in species and habitats along the Wellington south coast, with a particular focus on elucidating the potential and realised effects of wave exposure. A wave simulation model (SWAN) was used to identify the spatial variation in wave exposure relevant to intertidal and subtidal communities. In particular the spatial variation in wave forces was compared to the distribution of two subtidal macroalgal species, Macrocystis pyrifera and Ecklonia radiata, taking into consideration the biomechanical thresholds of damage for these plants. Despite considerable wave forces during winter storms, healthy E. radiata is unlikely to be damaged, whilst larger (>15 m stipe length) M. pyrifera plants are likely to be damaged in certain locations dependent on local sheltering effects. Furthermore, the distribution of M. pyrifera from aerial imagery coincided with areas that were predicted to have lower wave forces, suggesting that the distribution of M. pyrifera may be related to wave exposure.  I subsequently constructed species distribution models revealing the relationship between intertidal species distributions and environmental factors, as a predictive baseline of the current distributions of species. The abundances of Chamaesipho barnacle species were found to be best described by wave exposure, with increased cover correlated with increasing wave exposure, while contrasting patterns were observed for C. brunnea and C. columna with respect to distance from the harbour entrance, suggesting differential larval supply or differential responses to changing water column characteristics. Macroalgal assemblage composition was explained predominantly by wave exposure, with a rich macroalgal assemblage at the less exposed locations, and more exposed locations exhibiting a community consisting of coralline algal species and the large brown alga Durvillaea antarctica. The predictive models were then used to predict species distributions for a section of coastline demonstrating how this form of modelling can be used to maximise the potential of monitoring data.  Finally, a literature keyword search along with methodological developments and results from previous chapters are used in the final chapter to develop a framework for the collection of data from the planning phase all the way through to long-term monitoring of MRs.</p>


2021 ◽  
Author(s):  
◽  
Timothy Jones

<p>Monitoring marine ecosystems is essential for the conservation and management of marine biodiversity as it is central to the development of sustainable management practices and for assessing the effectiveness of the increasing number of marine reserves (MR) globally. Monitoring data are often collected in MRs to assess the state of natural marine systems in the absence of anthropogenic disturbance or to assess recovery of previously impacted species. In recent years, MR designation has attempted to move away from ad hoc approaches to MR establishment and towards using existing species distribution and abundance data to define protected areas. Given the logistics and cost of collecting biological data in the marine environment, effective methods are required to successfully demonstrate changes associated with MRs and to identify the spatial distribution of organisms and habitats for the planning of further MRs. The aim of this thesis was to identify effective protocols for the monitoring of fish and invertebrate species inside MRs in New Zealand, and to develop and apply methodologies to identify spatial distribution patterns relevant to marine spatial planning.  Using baseline data of fish and invertebrate species abundances for the Taputeranga MR I performed prospective power analyses to identify the most cost-effective monitoring approach for subsequent monitoring. Based on before-after-control-impact (BACI) tests the power to conclude statistically that abundances were higher at MR sites was low for even large simulated changes in abundance (two-fold or four-fold increases) for most species. Due to differences in baseline abundance and spatio-temporal variance terms, power varied considerably among species, highlighting the difficulty of monitoring all species to the same degree, whilst also remaining cost-effective. Furthermore, the results highlight the need for temporally replicated survey designs as “one-off” surveys had much lower power than those that were temporally replicated.  Longer term monitoring effectiveness was analysed using three long-term datasets from MRs in the South Island of New Zealand. I analysed the power of alternate underwater visual census (UVC) monitoring configurations to conclude statistically that there were increasing/decreasing trends in abundance, as well as the precision and accuracy of trend estimates. Overall even the highest replication designs considered had low power (< 80%) to conclude there was a non-zero trend even when simulated data represented trends equivalent to the population doubling or halving over ten years. The most cost-effective monitoring design varied among species and MRs, further highlighting that monitoring choices need to be location- and species-specific. A general finding, however, was that increasing the number of sites was almost always more beneficial than increasing the number of transects per site. Based on these results, I recommend that monitoring design planning focuses more specifically on assessments of precision and accuracy of estimated parameters, with less focus on power, as this places greater emphasis on interpreting monitoring data in terms of potential biological significance rather than testing for statistical significance.  Monitoring can never achieve complete coverage of large areas therefore methods for extrapolating or predicting species or habitats to un-surveyed locations are necessary for evaluating large-scale spatial distributions. To address this I used modelling techniques to identify the spatial variation in species and habitats along the Wellington south coast, with a particular focus on elucidating the potential and realised effects of wave exposure. A wave simulation model (SWAN) was used to identify the spatial variation in wave exposure relevant to intertidal and subtidal communities. In particular the spatial variation in wave forces was compared to the distribution of two subtidal macroalgal species, Macrocystis pyrifera and Ecklonia radiata, taking into consideration the biomechanical thresholds of damage for these plants. Despite considerable wave forces during winter storms, healthy E. radiata is unlikely to be damaged, whilst larger (>15 m stipe length) M. pyrifera plants are likely to be damaged in certain locations dependent on local sheltering effects. Furthermore, the distribution of M. pyrifera from aerial imagery coincided with areas that were predicted to have lower wave forces, suggesting that the distribution of M. pyrifera may be related to wave exposure.  I subsequently constructed species distribution models revealing the relationship between intertidal species distributions and environmental factors, as a predictive baseline of the current distributions of species. The abundances of Chamaesipho barnacle species were found to be best described by wave exposure, with increased cover correlated with increasing wave exposure, while contrasting patterns were observed for C. brunnea and C. columna with respect to distance from the harbour entrance, suggesting differential larval supply or differential responses to changing water column characteristics. Macroalgal assemblage composition was explained predominantly by wave exposure, with a rich macroalgal assemblage at the less exposed locations, and more exposed locations exhibiting a community consisting of coralline algal species and the large brown alga Durvillaea antarctica. The predictive models were then used to predict species distributions for a section of coastline demonstrating how this form of modelling can be used to maximise the potential of monitoring data.  Finally, a literature keyword search along with methodological developments and results from previous chapters are used in the final chapter to develop a framework for the collection of data from the planning phase all the way through to long-term monitoring of MRs.</p>


2011 ◽  
Vol 46 (1) ◽  
pp. 156-164 ◽  
Author(s):  
Jim Carfrae ◽  
Pieter De Wilde ◽  
John Littlewood ◽  
Steve Goodhew ◽  
Peter Walker

Sign in / Sign up

Export Citation Format

Share Document