Incidental Observations Regarding Resistance to Flow and the Vertical-Velocity Profile in the Central, Two-Dimensional Flow Region of High-Gradient Flumes and Cobble-Bed Streams

Author(s):  
T. W. Perry ◽  
E. A. Cohen
2011 ◽  
Vol 10 (1-2) ◽  
pp. 73
Author(s):  
J. H. Andrade ◽  
C. A. C. Santos ◽  
A. W. A. Cavalcante ◽  
M. A. Rocha

In this paper the Generalized Integral Transform Technique is employed to produce hybrid solutions for the velocity and pressure fields of a newtonian fluid in two dimensional flow. The problem is formulated by using primitive variables and the necessary mathematical manipulations were used to obtain the Poisson equation for the pressure field. The momentum equations in the axial direction of flow and Poisson are transformed to remove the transversal dependency. The resulting transformed fields are solved with the IMSL numerical subroutine, DBVPFD. The obtained results for the longitudinal velocity profile at the center of the channel are compared with the available data in the open literature for validation and model fitting. Even so, studies are carried out about the convergence of the solution for the velocity profile in the centerline as well as testing different values of the scale factor of axial coordinate for the choice of a factor which can fit perfectly for comparison with available data. Interest practical datas such as: friction factor and mean velocity are obtained along the duct for a entry condition into the parallel flow channel (v = 0).


1968 ◽  
Vol 31 (3) ◽  
pp. 481-500 ◽  
Author(s):  
N. S. Clarke

This paper is concerned with the steady, symmetric, two-dimensional flow of a viscous, incompressible fluid issuing from an orifice and falling freely under gravity. A Reynolds number is defined and considered to be small. Due to the apparent intractability of the problem in the neighbourhood of the orifice, interest is confined to the flow region below the orifice, where the jet is bounded by two free streamlines. It is assumed that the influence of the orifice conditions will decay exponentially, and so the asymptotic solutions sought have no dependence upon the nature of the flow at the orifice. In the region just downstream of the orifice, it is expected that the inertia effects will be of secondary importance. Accordingly the Stokes solution is sought and a perturbation scheme is developed from it to take account of the inertia effects. It was found possible only to express the Stokes solution and its perturbations in the form of co-ordinate expansions. This perturbation scheme is found to be singular far downstream due to the increasing importance of the inertia effects. Far downstream the jet is expected to be very thin and the velocity and stress variations across it to be small. These assumptions are used as a basis in deriving an asymptotic expansion for small Reynolds numbers, which is valid far downstream. This expansion also has the appearance of being valid very far downstream, even for Reynolds numbers which are not necessarily small. The method of matched asymptotic expansions is used to link the asymptotic solutions in the two regions. An extension of the method deriving the expansion far downstream, to cover the case of an axially-symmetric jet, is given in an appendix.


1999 ◽  
Vol 2 (3) ◽  
pp. 251-262
Author(s):  
P. Gestoso ◽  
A. J. Muller ◽  
A. E. Saez

Author(s):  
Gabriel Machado dos Santos ◽  
Ítalo Augusto Magalhães de Ávila ◽  
Hélio Ribeiro Neto ◽  
João Marcelo Vedovoto

Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 139-148
Author(s):  
Shiyang Liu ◽  
Xuefu Zhang ◽  
Feng Gao ◽  
Liangwen Wei ◽  
Qiang Liu ◽  
...  

AbstractWith the rapid development of traffic infrastructure in China, the problem of crystal plugging of tunnel drainage pipes becomes increasingly salient. In order to build a mechanism that is resilient to the crystal plugging of flocking drainage pipes, the present study used the numerical simulation to analyze the two-dimensional flow field distribution characteristics of flocking drainage pipes under different flocking spacings. Then, the results were compared with the laboratory test results. According to the results, the maximum velocity distribution in the flow field of flocking drainage pipes is closely related to the transverse distance h of the fluff, while the longitudinal distance h of the fluff causes little effect; when the transverse distance h of the fluff is less than 6.25D (D refers to the diameter of the fluff), the velocity between the adjacent transverse fluffs will be increased by more than 10%. Moreover, the velocity of the upstream and downstream fluffs will be decreased by 90% compared with that of the inlet; the crystal distribution can be more obvious in the place with larger velocity while it is less at the lower flow rate. The results can provide theoretical support for building a mechanism to deal with and remove the crystallization of flocking drainage pipes.


Sign in / Sign up

Export Citation Format

Share Document