vertical velocity profile
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 16)

H-INDEX

10
(FIVE YEARS 1)

Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2423
Author(s):  
Michael Rasmussen ◽  
Som Dutta ◽  
Bethany T. Neilson ◽  
Brian Mark Crookston

Stratified flows and the resulting density-driven currents occur in the natural environment and commonly in saline lakes. In the Great Salt Lake, Utah, USA, the northern and southern portions of the lake are divided by an east-to-west railroad causeway that disrupts natural lake currents and significantly increases salt concentrations in the northern section. To support management efforts focused on addressing rising environmental and economic concerns associated with varied saltwater densities throughout the lake, the causeway was recently modified to include a new breach. The purpose of this new breach is to enhance salt exchange between the northern and southern sections of the lake. Since construction, it typically exhibits a strong density-driven bidirectional flow pattern, but estimating flows and salt exchange has proven to be difficult. To obtain much needed insights into the ability of this hydraulic structure to exchange water and salt between the two sections of the lake, a field campaign coupled with CFD modeling was undertaken. Results from this study indicate that the vertical velocity profile in the breach is sensitive to density differences between flow layers along with breach geometry and water surface elevations. The CFD model was able to accurately represent the bidirectional flows through the breach and provides for improved estimates of water and salt exchanges between the north and south sections of the lake.


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 933
Author(s):  
Sebastian Schalau ◽  
Abdelkarim Habib ◽  
Simon Michel

CFD simulations of near-ground gas dispersion depend significantly on the accuracy of the wind field. When simulating wind fields with conventional RANS turbulence models, the velocity and turbulence profiles specified as inlet boundary conditions change rapidly in the approach flow region. As a result, when hazardous materials are released, the extent of hazardous areas is calculated based on an approach flow that differs significantly from the boundary conditions defined. To solve this problem, a turbulence model with consistent boundary conditions was developed to ensure a horizontally homogeneous approach flow. Instead of the logarithmic vertical velocity profile, a power law is used to overcome the problem that with the logarithmic profile, negative velocities would be calculated for heights within the roughness length. With this, the problem that the distance of the wall-adjacent cell midpoint has to be higher than the roughness length is solved, so that a high grid resolution can be ensured even in the near-ground region which is required to simulate gas dispersion. The evaluation of the developed CFD model using the German guideline VDI 3783/9 and wind tunnel experiments with realistic obstacle configurations showed a good agreement between the calculated and the measured values and the ability to achieve a horizontally homogenous approach flow.


2021 ◽  
Vol 13 (11) ◽  
pp. 2084
Author(s):  
Xian Xiao ◽  
Xiushu Qie ◽  
Zhixiong Chen ◽  
Jingyu Lu ◽  
Lei Ji ◽  
...  

The Beijing Broadband Lightning Network (BLNET) was successfully set up in North China and had yielded a considerable detection capability of total lightning (intracloud and cloud to ground) over the regions with complex underlying (plains, mountains, and oceans). This study set up a basic framework for the operational application of assimilating total lightning activities from BLNET and assesses the potential benefits in cloud-scale, very short-term forecast (nowcasting) by modulating the vertical velocity using the 4DVar technique. Nowcast statistics aggregated over 11 cycles show that the nowcasting performances with the assimilation of BLNET lightning datasets outperform RAD and the assimilation of GLD360 (Global Lightning) datasets. The assimilation of BLNET data improves the model's dynamical states in the analysis by enhancing the convergence and updraft in and near the convective system. To better implement of assimilating real-time lightning data, this study also conducts sensitivity experiments to investigate the impact of the horizontal length scale of a distance-weighted interpolation, binning time intervals, and different vertical profile or distance weights prior to the DA. The results indicate that the best forecast performance for assimilating BLNET lightning datasets is obtained in a 4DVar cycle when the lightning accumulation interval is 3 min, the radius of horizontal interpolation is 5 × 5, and the statistically vertical velocity profile and the distance weights obtained from cumulus cloud.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1486
Author(s):  
Jaehyun Shin ◽  
Il-Won Seo

In order to analyze the shear effect of secondary currents on the flow structures in a meandering channel, this research developed a two-dimensional shallow water model, which included the dispersion stress term accounting for the shear effect in the vertical velocity profile. A new equation for the vertical velocity profile that included nonlinear shear effects was derived from the equation of motion in the meandering channel with sharp curvature. Using the experiment data obtained from large-scale meandering channels, the ratio of the depth over the radius-of-curvature was incorporated into the shear intensity of the secondary flow in the proposed equation. Comparisons with the experimental results by Rozovskii (1957) showed that the computed values of the primary velocity distribution by the proposed model showed better fit with the observed data than the simulations with linear models and models without secondary flow consideration. The simulated results in the large-scale meandering channels demonstrated that simulations with the nonlinear secondary flow effect added into modeling gave higher accuracy, reducing the relative error by 19% in reproducing the skewed distributions of the primary flow in meandering channels, particularly in the regions where the effects from spiral motion were strong, due to sharp meanders.


2021 ◽  
Author(s):  
Anupal Baruah ◽  
Arup Kumar Sarma ◽  
Gilbert Hinge

Abstract Flow-vegetation interactions modify the instream roughness and flow characteristics in the river and estuaries. This study proposes a new quasi three-dimensional hydrodynamic framework to compute the vertical velocity profile in an open channel having submerged flexible vegetation. A modified form of two-dimensional depth-averaged shallow water equations coupled with vegetal drag forces is derived and applied in the simulation. The explicit second-order accurate TVD McCormack predictor-corrector finite difference method with operator splitting technique is used to solve the governing equations in MATLAB. The TVD approach is robust and gives accurate results free from numerical oscillations. The bending profile of the flexible stems under various flow events is calculated from the cantilever beam theory. The vertical velocity profile in the vegetation layer and the free water layer is estimated from Reynold's stress equation and Shannon's entropy theory. The present model is used to replicate some popular experimental test cases. Results indicate a conservative and robust model performance under different flow conditions and patch density. Quantitative analysis of the predicted results is carried out using two statistical indices and found satisfactory.


2021 ◽  
Author(s):  
Freija Mendrik ◽  
Roberto Fernández ◽  
Christopher Hackney ◽  
Catherine Waller ◽  
Robert Dorrell ◽  
...  

<p>Plastic fragments floating on the surface of oceans represent less than 1% of plastic pollution entering these environments annually, with the fate of the remaining plastics largely unknown. There are several removal mechanisms that have been suggested for microplastics (<5mm) including ingestion by biota, biofouling and/or aggregation with organic material leading to flocculation and a change in particle density that can impact trajectory and fate of the material. Furthermore, despite the widespread recognition that rivers dominate the global flux of plastics to the ocean, there is a key knowledge gap regarding the behaviour of microplastics in transport and its pathways from rivers into the coastal zone, especially in regards to how biofilm formation and aggregation influence particle fate. This prevents progress in understanding microplastic dynamics and identifying zones of high accumulation, as well as curtailing the evolution of effective mitigation and policy measures. To predict transport, fate and biological interactions of microplastics in aquatic environments at a global scale, the factors that control these processes must be identified and understood.</p><p>A laboratory settling experiment was therefore conducted to recognise how different factors, including salinity, suspended sediment and biofilm formation influence microplastic particle settling velocities, and thus transport. The results presented herein explore the role of biofilms on the generation of microplastic flocs and the impact on buoyancy and settling velocities. Six different polymers were tested and compared including fragments and fibres. Settling velocities were then combined with field flow data from the Mekong River, one of the top global contributors to marine plastic pollution, allowing predictions of areas of microplastic fallout and hotspots. The results also highlight potential areas of ecological risk related to the dispersal and distribution of microplastics across the river-delta-coast system including the ecologically important Tonle Sap Lake. Future work involves further aligned fieldwork within the Mekong River that details the particulate flux and transport of microplastics throughout the vertical velocity profile.</p>


2021 ◽  
Author(s):  
Sramana Neogi ◽  
Martin Singh

<p>The interaction between large-scale tropical circulations and moist convection has been the focus of a number of studies. However, projections of how the large-scale tropical circulation may change under global warming remain uncertain because our understanding of this interaction is still limited.</p><p>Here, we use a cloud-resolving model (CRM) coupled with a supra-domain scale (SDS) parameterisation of the large-scale circulation to investigate how tropical circulations driven by sea-surface temperature (SST) gradients change in a future warmer climate. Two popular SDS parameterisation schemes are compared; the weak temperature gradient approximation and the damped-gravity-wave approximation. In both cases, the large-scale vertical velocity is related to the deviation of the simulated density profile from a reference profile taken from the same model run to radiative-convective equilibrium.</p><p>We examine how the large-scale vertical velocity profile varies with surface temperature for fixed background profile (relative SST) as well as how it varies with the surface temperature of the reference profile (background SST). The domain mean vertical velocity appears to be very top-heavy with the maximum vertical velocity becoming stronger at warmer surface temperatures. The results are understood using a simple model for the thermodynamic structure of a convecting atmosphere based on an entraining plume. The model uses a fixed entrainment rate and the relative humidity from the cloud-resolving model to predict a temperature profile. The vertical velocities calculated from these predicted temperature profiles is similar to the vertical velocity structures and their behaviour in a warmer climate that we see in the CRM simulations. The results provide insight into large scale vertical velocity structures simulated by SDS parameterisation schemes, providing a stepping stone to understanding the factors driving changes to the large-scale tropical circulation in a future warmer climate.</p>


Sign in / Sign up

Export Citation Format

Share Document