Nonlinear Behavior of Diagonally Reinforced Coupling Beams

Author(s):  
Riyadh A. Hindi ◽  
Midhat A. Hassan
2013 ◽  
Vol 831 ◽  
pp. 137-140
Author(s):  
Kang Min Lee ◽  
Liu Yi Chen ◽  
Rui Li ◽  
Keun Yeong Oh ◽  
Young Soo Chun

Coupling beams resist lateral loads efficiently is well known in coupled wall systems. In many cases, geometric limits result in coupling beams that are deep in relation to their clear span. Coupling beams with small depth-to-span ratio shall be reinforced with two intersecting groups of diagonally placed bars symmetrical along the mid-span. It's always hard to optimize construction projects. This paper used the finite element software (Abaqus) to analysis and simulate the nonlinear behavior of a new reinforcement called head bar and compared the results to the current standards.


2013 ◽  
Vol 831 ◽  
pp. 141-144
Author(s):  
Kang Min Lee ◽  
Liu Yi Chen ◽  
Rui Li ◽  
Keun Yeong Oh ◽  
Young Soo Chun

Coupling beams have been used in high-rise shear wall buildings widely, which take great advantages of high stiffness, small lateral deformation and easy to satisfy with bearing capacity. Coupling beams exhibit different performance with deep beams, which always have small depth-to-span ratio. According to current standards coupling beams shall be reinforced with two intersecting groups of diagonally placed bars symmetrical along the midspan. It's always hard to optimize construction projects. This paper used the finite element software (Abaqus) to analysis and simulate the nonlinear behavior of steel composite reinforcement and compared the results to the current standards.


TAPPI Journal ◽  
2009 ◽  
Vol 8 (1) ◽  
pp. 4-11
Author(s):  
MOHAMED CHBEL ◽  
LUC LAPERRIÈRE

Pulp and paper processes frequently present nonlinear behavior, which means that process dynam-ics change with the operating points. These nonlinearities can challenge process control. PID controllers are the most popular controllers because they are simple and robust. However, a fixed set of PID tuning parameters is gen-erally not sufficient to optimize control of the process. Problems related to nonlinearities such as sluggish or oscilla-tory response can arise in different operating regions. Gain scheduling is a potential solution. In processes with mul-tiple control objectives, the control strategy must further evaluate loop interactions to decide on the pairing of manipulated and controlled variables that minimize the effect of such interactions and hence, optimize controller’s performance and stability. Using the CADSIM Plus™ commercial simulation software, we developed a Jacobian sim-ulation module that enables automatic bumps on the manipulated variables to calculate process gains at different operating points. These gains can be used in controller tuning. The module also enables the control system designer to evaluate loop interactions in a multivariable control system by calculating the Relative Gain Array (RGA) matrix, of which the Jacobian is an essential part.


2020 ◽  
Vol 7 (3) ◽  
pp. 11-22
Author(s):  
VALERY ANDREEV ◽  
◽  
ALEXANDER POPOV

A reduced model has been developed to describe the time evolution of a discharge in an iron core tokamak, taking into account the nonlinear behavior of the ferromagnetic during the discharge. The calculation of the discharge scenario and program regime in the tokamak is formulated as an inverse problem - the optimal control problem. The methods for solving the problem are compared and the analysis of the correctness and stability of the control problem is carried out. A model of “quasi-optimal” control is proposed, which allows one to take into account real power sources. The discharge scenarios are calculated for the T-15 tokamak with an iron core.


2020 ◽  
Vol 12 ◽  
Author(s):  
S.V. Kontomaris ◽  
A. Malamou ◽  
A. Stylianou

Background: The determination of the mechanical properties of biological samples using Atomic Force Microscopy (AFM) at the nanoscale is usually performed using basic models arising from the contact mechanics theory. In particular, the Hertz model is the most frequently used theoretical tool for data processing. However, the Hertz model requires several assumptions such as homogeneous and isotropic samples and indenters with perfectly spherical or conical shapes. As it is widely known, none of these requirements are 100 % fulfilled for the case of indentation experiments at the nanoscale. As a result, significant errors arise in the Young’s modulus calculation. At the same time, an analytical model that could account complexities of soft biomaterials, such as nonlinear behavior, anisotropy, and heterogeneity, may be far-reaching. In addition, this hypothetical model would be ‘too difficult’ to be applied in real clinical activities since it would require very heavy workload and highly specialized personnel. Objective: In this paper a simple solution is provided to the aforementioned dead-end. A new approach is introduced in order to provide a simple and accurate method for the mechanical characterization at the nanoscale. Method: The ratio of the work done by the indenter on the sample of interest to the work done by the indenter on a reference sample is introduced as a new physical quantity that does not require homogeneous, isotropic samples or perfect indenters. Results: The proposed approach, not only provides an accurate solution from a physical perspective but also a simpler solution which does not require activities such as the determination of the cantilever’s spring constant and the dimensions of the AFM tip. Conclusion: The proposed, by this opinion paper, solution aims to provide a significant opportunity to overcome the existing limitations provided by Hertzian mechanics and apply AFM techniques in real clinical activities.


Sign in / Sign up

Export Citation Format

Share Document