Calibration of an Elastoplastic Model for the Prediction of Stone Column Ultimate Bearing Capacity

Author(s):  
Wissem Frikha ◽  
Mounir Bouassida ◽  
Jean Canou
Author(s):  
Mahdi Karkush ◽  
◽  
Anwar Jabbar ◽  

One of the common geotechnical problems is the construction on soft soil and the improvement of its geotechnical properties to meet the design requirements. A stone column is one of the well-known techniques used to improve the geotechnical properties of soft soils. Sometimes thick layers of soft soil imposed the designer to use floating stone columns for improvement of such soil; in this case, the designer will be lost the end bearing of the stone column. In this study, the effects of several patterns of floating stone columns distribution under footing on the bearing capacity of soil and the distribution of excess porewater pressure are investigated. The soft soil used in this study has a very low undrained shear strength (cu) of 5.5 kPa and improved by several patterns of stone columns (single, two linear, triangular, square, and quadrilateral). The stone column has a length of 180 mm and a diameter of 30 mm. The material of the stone column is poorly graded sand has an angle of internal friction (48.5°) at a relative density of 65%. The results indicated a significant increase in the ultimate bearing capacity of soft soil when treated with floating stone columns despite the small ratio of area replacement and reducing the excess porewater pressure and settlement. Also, the ultimate bearing capacity of soil calculated from experimental work is compared with the corresponding values obtained from the proposed equations in the previous studies to evaluate the validity of using such equations.


1978 ◽  
Vol 15 (4) ◽  
pp. 605-609 ◽  
Author(s):  
M. R. Madhav ◽  
P. P. Vitkar

There are many field situations where at least a moderate increase in the bearing capacity in weak clays is desired. One of the solutions for such situations is stabilization by installing a granular pile or stone column using empirical designs. The plane strain version of a granular pile is a granular trench. In the present investigation a failure mechanism is postulated for the granular trench and analytical expressions are derived for the ultimate bearing capacity of footings on such stabilized soils. Bearing capacity factors are presented for various combinations of the parameters considered. From the present study it has been reaffirmed that a granular trench significantly reinforces weak clay deposits.


Author(s):  
Lianheng Zhao ◽  
Shan Huang ◽  
Zhonglin Zeng ◽  
Rui Zhang ◽  
Gaopeng Tang ◽  
...  

2014 ◽  
Vol 488-489 ◽  
pp. 497-500
Author(s):  
You Lin Zou ◽  
Pei Yan Huang

Deem test results from the low reversed cyclic loading quasi-static test with 2 RC columns as the basic information of secant stiffness damage of the reference column and take use of the TMS instrument in the test to artificially make the damage percentage of secant stiffness of the RC column as 33%, 50% and 66%, 6 damaged columns in total; reinforce the 6 damaged columns and 2 undamaged ones under the same conditions with AFL, through quasi-static contrast test. Test results show that it is able to effectively boost horizontal ultimate bearing capacity and ductility deformability of the RC columns with AFL for reinforcement; besides, there is a linear function relationship between horizontal ultimate bearing capacity, target ductility factor, and damage percentage of secant stiffness.


Sign in / Sign up

Export Citation Format

Share Document