The Self-Tuning Fuzzy PID Control of Tracked Vehicle Hydrostatic Transmission

Author(s):  
Baorui Chen ◽  
Biao Ma ◽  
Heyan Li ◽  
Lei Yang
2013 ◽  
Vol 819 ◽  
pp. 238-243
Author(s):  
Yin Fa Zhu ◽  
Bing Bing Chen

The self-tuning fuzzy PID controller of the electro-hydraulic proportion position control system is designed and researched. Compared the self-tuning fuzzy PID control with the traditional PID control through experiments for the track effect on sinusoidal signals, the results show that the self-tuning fuzzy PID controller has higher accuracy and better stability. It is a more excellent performance controller.


2012 ◽  
Vol 241-244 ◽  
pp. 1248-1254
Author(s):  
Feng Chen Huang ◽  
Hui Feng ◽  
Zhen Li Ma ◽  
Xin Hui Yin ◽  
Xue Wen Wu

Fuzzy control, based on traditional Proportional-Integral-Derivative (PID) control, is used to improve the management of a hydro-junction’s sluice scheduling. In this study, we combined the PID and Fuzzy control theories and determined the PID parameters of the fuzzy self-tuning method of a hydro-junction’s sluice. A fuzzy self-tuning PID controller and its algorithm were designed. In hydro-junction sluice control, the Fuzzy PID controller can modify PID parameters in real-time, resulting in a more dynamic response. The application of the fuzzy self-tuning PID controller in the CiHuai River project information integration system yielded very good results.


2013 ◽  
Vol 341-342 ◽  
pp. 892-895
Author(s):  
Jun Chao Zhang ◽  
Shao Hong Jing

The introduction of the AQC boiler has complex effects on the temperature of Tertiary air, traditional PID is difficult to achieve the effective control. Combined the method of the conventional PID with the fuzzy control theory, a fuzzy self-tuning PID controller is designed. Compared with traditional PID, results of simulation show that the fuzzy PID controller improves not only the adaptability and robustness of the system, but also the system's static and dynamic performance.


2014 ◽  
Vol 953-954 ◽  
pp. 353-356 ◽  
Author(s):  
Fan Yang ◽  
Tong Yang ◽  
Xiao Hong Yang

Aimed at the high inertia and non-linear characteristics of yaw system, a parameter self –tuning fuzzy PID controller is designed. The controller can adjust the PID parameters based on the wind direction variation, and make the turbines track the coming wind timely to obtain maximum power output. Simulation results show that the controller has good real-time performance and robustness compared with the traditional PID control. It can lower the fluctuation and overshoot, and improve the stability of the yaw system significantly.


2012 ◽  
Vol 472-475 ◽  
pp. 3063-3066
Author(s):  
Rong Luo ◽  
Lun Wei Chen ◽  
Hong Bo Ren ◽  
Cheng Yu Liu

Aim at the effect of the control method in traditional metallurgy furnace temperature is not good, a self-tuning fuzzy PID control method combining fuzzy control with PID control was proposed in this paper based on the analysis of the advantages and disadvantages of the PID control and fuzzy control method, and a concrete control algorithm was put forward and simulation experiment was finished. The simulation results show that the effect of the controller is good, and the control of system is fast and smoothly according to it.


2013 ◽  
Vol 739 ◽  
pp. 550-554 ◽  
Author(s):  
Xu Sheng Gan ◽  
Xue Qin Tang ◽  
Jian Guo Gao

A design of the fuzzy self-tuning immune PID controller is proposed. The controller, which combines immune feedback mechanism and fuzzy PID control, executes the self-tuning of PID parameters in the control system. A simulation experiment is presented in light of a tactical missile autopilot transfer function. Simulation result shows that the performance of fuzzy self-tuning immune PID controller is better than that of fuzzy PID controller, especially in its robust performance for variable parameter system.


Sign in / Sign up

Export Citation Format

Share Document