Fracture Grouting to Lift Structure in Clayey Sand

Author(s):  
James C. Ni ◽  
Wen-Chieh Cheng
2010 ◽  
Vol 11 (11) ◽  
pp. 879-886 ◽  
Author(s):  
James C. Ni ◽  
Wen-chieh Cheng

2021 ◽  
Vol 651 (3) ◽  
pp. 032047
Author(s):  
Shaozhen Cheng ◽  
Fa Yang ◽  
Yuchen Dai ◽  
Zili Yang ◽  
Ye Shi

Geotechnics ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 38-58
Author(s):  
Pouyan Abbasimaedeh ◽  
Ali Ghanbari ◽  
Brendan C. O’Kelly ◽  
Mohsen Tavanafar ◽  
Kourosh Ghaffari Irdmoosa

Lightweight fill can be advantageous in embankment construction for the purposes of reducing the (i) bearing pressures on the underlying soil foundation, (ii) destabilizing moments for constructed earthen slopes, and (iii) earth pressures acting behind retaining walls. This paper investigates the merits/limitations of particulate expanded polystyrene (EPS) beads mixed with clayey sand (CS) soil as lightweight fill, considering both geotechnical and environmental perspectives. The bench-scale geotechnical testing programme included standard Proctor (SP) compaction, California bearing ratio (CBR), direct shear (sheardox), oedometer and permeability testing performed on two different gradation CS soils amended with 0.5, 1.5 and 3.0 wt.% EPS, investigating two nominal bead sizes equivalent to poorly-graded medium and coarse sands. Compared to the unamended soils, the compacted dry density substantially decreased with increasing EPS beads content, from 2.09 t/m3 (0 wt.% EPS) to as low as 0.33 t/m3 for 3 wt.% (73 v.%) of larger-sized EPS beads. However, from analyses of the test results for the investigated 50 to 400 kPa applied stress range, even 0.5 wt.% (21 v.%) EPS beads caused a substantial mechanical failure, with a drastic decay of the CBR and compressibility parameters for the studied CS soils. Given the more detrimental environmental cost of leaving myriads of separate EPS beads mixed forever among the soil, it is concluded that the approach of adding particulate EPS beads to soils for producing uncemented lightened fill should not be employed in geotechnical engineering practice.


2009 ◽  
Vol 5 (4) ◽  
pp. 311-344 ◽  
Author(s):  
M. Grujicic ◽  
B. Pandurangan ◽  
N. Coutris ◽  
B. A. Cheeseman ◽  
W. N. Roy ◽  
...  

Author(s):  
GN Egwuonwu ◽  
EI Okoyeh ◽  
DC Agarana ◽  
EG Nwaka ◽  
OB Nwosu ◽  
...  

Two-dimensional Electrical Resistivity Tomography (2DERT) and Seismic Refraction Tomography (2DSRT) were concurrently applied in assessment of a gully site with the view of assessing its stability and risk level. Eight profile lines oriented parallel and perpendicular to the boundary of the gully were surveyed. As a result, apparent resistivity model tomograms in the range of 1-9,000 and p-wave velocity models in the range of 300-700 were obtained from the two techniques respectively. Interpretation of the models obtained show predominance of unconsolidated clay, shale intercalates, clayey sand, sandy clay and weathered lateritic soil at shallow depths. Low amplitude undulating refracting layers, landslide slip subsurface and lose horizons were also delineated at shallow depths. The predominance of weak, clayey and unconsolidated lithology at the gully site suggests evidence of unstable gravitational equilibrium which imply environmental hazard. The plausible deductions made from the two


Sign in / Sign up

Export Citation Format

Share Document