Numerical Simulations and Parametric Study of SDCM and DCM Piles under Full Scale Axial and Lateral Loads

2011 ◽  
Author(s):  
D. T. Bergado ◽  
T. Suksawat ◽  
P. Jamsawang
2011 ◽  
Vol 38 (3) ◽  
pp. 318-329 ◽  
Author(s):  
Panich Voottipruex ◽  
Taweephong Suksawat ◽  
D.T. Bergado ◽  
Pitthaya Jamsawang

Author(s):  
J.Ajay Paul ◽  
Sagar Chavan Vijay ◽  
U. Magarajan ◽  
R.Thundil Karuppa Raj

In this experiment the single cylinder air cooled engines was assumed to be a set of annular fins mounted on a cylinder. Numerical simulations were carried out to determine the heat transfer characteristics of different fin parameters namely, number of fins, fin thickness at varying air velocities. A cylinder with a single fin mounted on it was tested experimentally. The numerical simulation of the same setup was done using CFD. The results validated with close accuracy with the experimental results. Cylinders with fins of 4 mm and 6 mm thickness were simulated for 1, 3, 4 &6 fin configurations.


Micromachines ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 769 ◽  
Author(s):  
Wang ◽  
Zhang ◽  
Gao ◽  
Wang ◽  
Deng ◽  
...  

This paper proposes a novel microdroplet generator based on the dielectrophoretic (DEP) force. Unlike the conventional continuous microfluidic droplet generator, this droplet generator is more like “invisible electric scissors”. It can cut the droplet off from the fluid matrix and modify droplets’ length precisely by controlling the electrodes’ length and position. These electrodes are made of liquid metal by injection. By applying a certain voltage on the liquid-metal electrodes, the electrodes generate an uneven electric field inside the main microfluidic channel. Then, the uneven electric field generates DEP force inside the fluid. The DEP force shears off part from the main matrix, in order to generate droplets. To reveal the mechanism, numerical simulations were performed to analyze the DEP force. A detailed experimental parametric study was also performed. Unlike the traditional droplet generators, the main separating force of this work is DEP force only, which can produce one droplet at a time in a more precise way.


2018 ◽  
Vol 219 ◽  
pp. 02012
Author(s):  
Dawid Bruski ◽  
Stanisław Burzyński ◽  
Jacek Chróścielewski ◽  
Łukasz Pachocki ◽  
Krzysztof Wilde ◽  
...  

Road safety barriers are used to increase safety in potentially dangerous places on the roads. They are designed and installed on the roads to prevent any vehicle from getting outside the travelled way or from entering the opposite lane of the road. Barriers, which are used on European roads, have to undergo full scale crash tests according to the EN 1317 standards. Nowadays as a supplement to real crash tests, numerical simulations are commonly used. The work concerns the influence of position of the post or its absence on the crashworthiness of the cable barrier based on numerical study results.


1984 ◽  
Vol 19 (1) ◽  
pp. 1-8 ◽  
Author(s):  
R S Srinivasan ◽  
V Thiruvenkatachari

Thin annular sector plates undergoing large deflections due to lateral loads are considered in this paper. For such plates exact solutions are not available. A matrix method using integral equation of beams and the Newton Raphson procedure has been adopted for the analysis of clamped annular sector plates. Numerical values for the deflection, the membrane and the bending stresses at the interior of the plate, and the bending stresses at the edges of the plate are obtained. A parametric study has been carried out by varying the sector angle from 30 to 90 degrees in steps of 30 degrees, and the ratio of the inner and outer radii from 0 to 0.6 in steps of 0.2. The results are presented in non-dimensional graphical format.


2020 ◽  
Vol 8 (2) ◽  
pp. 141 ◽  
Author(s):  
Ville Viitanen ◽  
Timo Siikonen ◽  
Antonio Sánchez-Caja

In this paper, we conducted numerical simulations to investigate single and two-phase flows around marine propellers in open-water conditions at different Reynolds number regimes. The simulations were carried out using a homogeneous compressible two-phase flow model with RANS and hybrid RANS/LES turbulence modeling approaches. Transition was accounted for in the model-scale simulations by employing an LCTM transition model. In model scale, also an anisotropic RANS model was utilized. We investigated two types of marine propellers: a conventional and a tip-loaded one. We compared the results of the simulations to experimental results in terms of global propeller performance and cavitation observations. The propeller cavitation, near-blade flow phenomena, and propeller wake flow characteristics were investigated in model- and full-scale conditions. A grid and time step sensitivity studies were carried out with respect to the propeller performance and cavitation characteristics. The model-scale propeller performance and the cavitation patterns were captured well with the numerical simulations, with little difference between the utilized turbulence models. The global propeller performance and the cavitation patterns were similar between the model- and full-scale simulations. A tendency of increased cavitation extent was observed as the Reynolds number increases. At the same time, greater dissipation of the cavitating tip vortex was noted in the full-scale conditions.


Sign in / Sign up

Export Citation Format

Share Document