Evaluating the Compaction Quality of Backfills by Stress Wave Velocities

Author(s):  
Jiunnren Lai ◽  
Shengmin Wu ◽  
Chih-Hung Chiang
Keyword(s):  
2011 ◽  
Vol 39 (5) ◽  
pp. 103428
Author(s):  
M. R. Mitchell ◽  
R. E. Link ◽  
Jiunnren Lai ◽  
Shengmin Wu ◽  
Chih-Hung Chiang
Keyword(s):  

2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Jian Li ◽  
Yiming Fang ◽  
Jiyong Tang ◽  
Hailin Feng ◽  
Xiongwei Lou

Stress wave based techniques have been developed for evaluating the quality of the wooden materials nondestructively. However the existing techniques have some shortcomings due to the significant variation of the wood properties and are now in need of updating. There are also stress wave based instruments which have been widely used for nondestructive testing of wood. But most of them are inflexible and unsuitable for the tentative studies. This paper proposed and implemented a wood nondestructive testing platform based on NI virtual instrument. Three wood nondestructive testing methods, including peak time interval measurement, cross-correlation, and spectrum analysis, were also tested on this platform with serious decay sample, early decay sample, and defect-free sample. The results show that new methods can be verified easily and the researches of wood nondestructive testing will be accelerated with the designed platform.


1994 ◽  
Vol 76 (2) ◽  
pp. 565-571 ◽  
Author(s):  
M. Jahed ◽  
S. J. Lai-Fook

In anesthetized pigs (25–40 kg), we generated stress waves in the lung by rapid deflation of an esophageal balloon. The source distortion was measured by an accelerometer (1 g wt) bonded to the balloon. Stress waves were detected by three accelerometers bonded to intercostal muscle and to the skin near midchest. The distance between the source and chest receivers were measured radiographically. Cross-spectral analysis was used to calculate transit times. We measured stress wave velocities at airway pressures of 0 (functional residual capacity) and 25 cmH2O. Transpulmonary pressure (Ptp) was measured by an esophageal balloon. In vivo, stress wave velocities increased from 291 +/- 117 (SD) cm/s at 3.0 +/- 0.9 cmH2O Ptp to 573 +/- 73 cm/s at 13.8 +/- 3.5 cmH2O Ptp (n = 6). These velocities agreed with longitudinal wave velocities measured in isolated sheep lungs and predictions based on the elastic moduli of lung parenchyma. Post-mortem edema was induced by intratracheal instillation of 200 ml of saline, resulting in a wet-to-dry weight ratio of 7.7 +/- 1.4 (n = 5). At 15 cmH2O Ptp, stress wave velocities decreased from 565 +/- 155 cm/s before edema to 445 +/- 130 cm/s after edema. This decrease correlated well with predictions based on the increased lung density, as dictated by elasticity theory.


2012 ◽  
Vol 446-449 ◽  
pp. 2229-2233 ◽  
Author(s):  
Xian Kai Bao ◽  
Yi Li

Bolt has been used widely in geoengineering all over the world in recent years, the testing technique of bolt develops quickly too. This paper summarizes simply the history of bolt testing technique, describes in detail stress wave reflection method. It is useful and valuable nondestructive.Testing method is verified with several parameters which estimate quality of bolting integrity.


2015 ◽  
Vol 76 (2) ◽  
Author(s):  
Badee Alshameri ◽  
Ismail Bakar ◽  
Aziman Madun ◽  
Edy Tonnizam Mohamad

One of the main geophysical tools (seismic tools) in the laboratory is the bender element. This tool can be used to measure some dynamic soil properties (e.g. shear and Young’s modulus). However, even if it relatively simple to use the bender element, inconsistent testing procedures can cause poor quality in the bender element data. One of the bender element procedure that always neglected is the alignment (different positions of bender element receiver to the transmitter in the vertical axis). The alignment effect was evaluated via changing the horizontal distance between transmitter and receiver starting from 0 to 110 mm for two sizes of the sample's thickness (i.e. 63.17 mm and 91.51 mm). Five methods were applied to calculate the travel times. Those methods were as the following: visually, first-peak, maximum-peak, CCexcel and CCGDS. In general, the experiments indicated uncertain results for both of the P-wave (primary wave) and S-wave (secondary wave) velocities at zone of Dr:D above 0.5:1 (where Dr is the horizontal distance of the receiver from the vertical axis and D is the thickness of the sample). On the other hand, both the visual and first-peak methods show the wave velocities results are higher than obtained from other methods. However, the ratio between the amplitude of transmitter signals to receiver amplitude signal was taken to calculate the damping-slope of the P-wave and S-wave. Thus the results from damping slope show steeply slope when the ratio of  Dr:D is above 0.5:1 compare with gentle slope below ratio 0.5:1 at the sample with thickness equal to 91.51 mm, while there is no variation at a slope in sample with thickness equal to 63.17 mm.


2017 ◽  
Vol 138 ◽  
pp. 02019 ◽  
Author(s):  
Keng-Tsang Hsu ◽  
Chia-Chi Cheng ◽  
Chih-Hung Chiang ◽  
Hung-Hua Wang
Keyword(s):  

1998 ◽  
Vol 120 (3) ◽  
pp. 321-326 ◽  
Author(s):  
J. J. Crisco ◽  
T. C. Dunn ◽  
R. D. McGovern

The velocity of longitudinal stress waves in an elastic body is given by the square root of the ratio of its elastic modulus to its density. In tendinous and ligamentous tissue, the elastic modulus increases with strain and with strain rate. Therefore, it was postulated that stress wave velocity would also increase with increasing strain and strain rate. The purpose of this study was to determine the velocity of stress waves in tendinous tissue as a function of strain and to compare these values to those predicted using the elastic modulus derived from quasi-static testing. Five bovine patellar tendons were harvested and potted as bone–tendon–bone specimens. Quasi-static mechanical properties were determined in tension at a deformation rate of 100 mm/s. Impact loading was employed to determine wave velocity at various strain levels, achieved by preloading the tendon. Following impact, there was a measurable delay in force transmission across the specimen and this delay decreased with increasing tendon strain. The wave velocities at tendon strains of 0.0075, 0.015, and 0.0225 were determined to be 260 ± 52 m/s, 360 ± 71 m/s, and 461 ± 94 m/s, respectively. These velocities were significantly (p < 0.01) faster than those predicted using elastic moduli derived from the quasi-static tests by 52, 45, and 41 percent, respectively. This study has documented that stress wave velocity in patellar tendon increases with increasing strain and is underestimated with a modulus estimated from quasi-static testing.


2012 ◽  
Vol 166-169 ◽  
pp. 559-562
Author(s):  
Li Wei Zhang ◽  
Wei Shi ◽  
Yu Na Zou ◽  
De Sheng Zhu

The dynamic testing of stress wave reflection method is an easy, economical, rapid and reliable nondestructive testing technology and has been perfected used in the pile foundation dynamic testing. Anchor rod is more in line with the wave theory of one-dimensional elastic rod than pile foundation whether to theory or the geometric solid, material, stress state and other factors. The quality of anchor rod is determined by using small strain method (hammering method) of pile foundation dynamic measurement. Four testing anchor rods with different length and integrity were made in project of "China Marine Sport School", stress wave time domain curve of anchor rod was obtained by ZK-7E portable intelligent testing of piles instrument, defect location, length of anchor rod and integrity reflected by measured waveform are consistent with the actual situation, the method using pile foundation dynamic testing technology for anchor rod nondestructive testing is proved feasible and reliable.


Sign in / Sign up

Export Citation Format

Share Document