esophageal balloon
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 29)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Vol 2 (4) ◽  
pp. 125-130
Author(s):  
Marissa Su ◽  
Kimiyo Yamasaki ◽  
Ehab Daoud

Background Prone position ventilation has shown to improve oxygenation and mortality in severe ARDS. The data of prone position ventilation during severe ARDS secondary to COVID-19 have shown similar benefit in oxygenation and mortality. Usually, patient placed in prone position are placed flat or in reverse Trendelenburg positioning to decrease risk of aspiration and abdominal girth compressing the chest. To date, no studies are available to compare the effects of positioning the bed in different angles during the prone position ventilation. Methods An observational study in fifteen patients with severe ARDS secondary to COVID-19 who were placed in the prone position for the first time. All the patients were sedated and chemically paralyzed with no spontaneous effort. All patients were ventilated with the pressure-controlled mode with set PEEP according to the pressure-volume curves. Five patients had esophageal balloon manometry to estimate pleural pressures and trans-pulmonary pressures. Patients were initially placed in reverse Trendelenburg position and later in Trendelenburg position. Tidal volume and respiratory compliance were observed for 30 minutes after bed positioning has been achieved. Tidal volume and total respiratory compliance in both Trendelenburg and reverse Trendelenburg position were compared. Ventilator settings were not changed during the observation. No patients were suspected of increased intra-cranial or intra-ocular pressures. T-test was done to compare the values. Results Tidal volume significantly increased by 80.26 ± 23.4 ml/breath (95% CI 37.7 - 122.9) from 391.3 ± 52.7 to 471.6 ± 60.9 (20.5%) P 0.001. The respiratory system compliance significantly increased by 4.9 ml/cmH2O (95% CI 1.4 - 8.4) from 34.6 ± 4.7 to 39.5 ± 4.6 (14%) P 0.001. Of the five patients with esophageal balloon, the lung compliance significantly increased by 16.7 ml/cmH2O (95% CI 12.8 – 20.6) from 66.6 ± 1.7 to 83.3 ± 3.3 (25%) P 0.001. The chest wall compliance had small but non-significant increase by 1.5 ml/cmH2O (95% CI -1.3 – 4.3) from 65 ± 1.4 to 66.5 ± 2.3 (2%) P 0.085. Conclusion In this study, statistically significant increase in tidal volume, lung and respiratory system compliance were observed in patients placed in the Trendelenburg position during prone position ventilation. The results reflect the effect of body positioning during prone position ventilation. These effects may be the reflection of altered ventilation distribution throughout the lungs and change in pleural pressure as well as trans-pulmonary pressure during body positioning. More studies need to be done to confirm and examine this phenomenon. Precautions should be taken as this maneuver can increase the intra-cranial and intra-ocular pressures. Keywords: COVID-19, Trendelenburg, Reverse Trendelenburg, ARDS


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Óscar Arellano-Pérez ◽  
Felipe Castillo Merino ◽  
Roberto Torres-Tejeiro ◽  
Sebastián Ugarte Ubiergo

Abstract Background Esophageal pressure measurement is a minimally invasive monitoring process that assesses respiratory mechanics in patients with acute respiratory distress syndrome. Airway pressure release ventilation is a relatively new positive pressure ventilation modality, characterized by a series of advantages in patients with acute respiratory distress syndrome. Case presentation We report a case of a 55-year-old chilean female, with preexisting hypertension and recurrent renal colic who entered the cardiosurgical intensive care unit with signs and symptoms of urinary sepsis secondary to a right-sided obstructive urolithiasis. At the time of admission, the patient showed signs of urinary sepsis, a poor overall condition, hemodynamic instability, tachycardia, hypotension, and needed vasoactive drugs. Initially the patient was treated with volume control ventilation. Then, ventilation was with conventional ventilation parameters described by the Acute Respiratory Distress Syndrome Network. However, hemodynamic complications led to reduced airway pressure. Later she presented intraabdominal hypertension that compromised the oxygen supply and her ventilation management. Considering these records, an esophageal manometry was used to measure distending lung pressure, that is, transpulmonary pressure, to protect lungs. Initial use of the esophageal balloon was in a volume-controlled modality (deep sedation), which allowed the medical team to perform inspiratory and expiratory pause maneuvers to monitor transpulmonary plateau pressure as a substitute for pulmonary distension and expiratory pause and determine transpulmonary positive end-expiratory pressure. On the third day of mechanical respiration, the modality was switched to airway pressure release ventilation. The use of airway pressure release ventilation was associated with reduced hemodynamic complications and kept transpulmonary pressure between 0 and 20 cmH2O despite a sustained high positive end-expiratory pressure of 20 cmH2O. Conclusion The application of this technique is shown in airway pressure release ventilation with spontaneous ventilation, which is then compared with a controlled modality that requires a lesser number of sedative doses and vasoactive drugs, without altering the criteria for lung protection as guided by esophageal manometry.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhimin Lin ◽  
Jing Zhou ◽  
Xiaoling Lin ◽  
Yingzhi Wang ◽  
Haichong Zheng ◽  
...  

IntroductionThe role of reverse trigger (RT) was unknown in ventilated non-acute respiratory distress syndrome (ARDS) patients. So we conducted a retrospective study to evaluate the incidence, characteristics and physiologic consequence of RT in such population.MethodSix ventilated non-ARDS patients were included, the esophageal balloon catheter were placed for measurements of respiratory mechanics in all patients. And the data were analyzed to identified the occurrence of RT, duration of the entrainment, the entrainment pattern or ratio, the phase difference (dP) and the phase angle (θ), phenotypes, Effects and clinical correlations of RT.ResultRT was detected in four patients of our series (66.7%), and the occurrence of RT varying from 19 to 88.6% of their recording time in these 4 patients. One patient (No.2) showed a stable 1:1 ratio and Mid-cycle RT was the most common phenotype. However, the remained patients showed a mixed ratios, and Late RT was the most common phenotype, followed by RT with breath stacking. The average values of mean phase delay and phase angles were 0.39s (0.32, 0.98) and 60.52° (49.66, 102.24). Mean phase delay and phase angles were shorter in early reverse triggering with early and delayed relaxation, and longer in mid, late RT and RT with breath stacking. Pmus was variable between patients and phenotypes, and larger Pmus was generated in Early RT, Delayed Relaxation and mid cycle RT. When the RT occurred, the Peso increased 17.27 (4.91, 19.71) cmH2O compared to the controlled breathing, and the average value of incremental ΔPeso varied widely inter and intra patients (Table 3B and Figure 1). Larger ΔPeso was always generated in Early RT, Delayed Relaxation and mid cycle RT, accompanied by an significant increase of PL with 19.12 (0.75) cmH2O and 16.10 (6.23) cmH2O.ConclusionRT could also be observed in ventilated non-ARDS patients. The characteristics of pattern and phenotype was similar to RT in ARDS patients to a large extent. And RT appeared to alter lung stress and delivered volumes.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247360
Author(s):  
Nao Okuda ◽  
Miyako Kyogoku ◽  
Yu Inata ◽  
Kanako Isaka ◽  
Kazue Moon ◽  
...  

Background It is important to evaluate the size of respiratory effort to prevent patient self-inflicted lung injury and ventilator-induced diaphragmatic dysfunction. Esophageal pressure (Pes) measurement is the gold standard for estimating respiratory effort, but it is complicated by technical issues. We previously reported that a change in pleural pressure (ΔPpl) could be estimated without measuring Pes using change in CVP (ΔCVP) that has been adjusted with a simple correction among mechanically ventilated, paralyzed pediatric patients. This study aimed to determine whether our method can be used to estimate ΔPpl in assisted and unassisted spontaneous breathing patients during mechanical ventilation. Methods The study included hemodynamically stable children (aged <18 years) who were mechanically ventilated, had spontaneous breathing, and had a central venous catheter and esophageal balloon catheter in place. We measured the change in Pes (ΔPes), ΔCVP, and ΔPpl that was calculated using a corrected ΔCVP (cΔCVP-derived ΔPpl) under three pressure support levels (10, 5, and 0 cmH2O). The cΔCVP-derived ΔPpl value was calculated as follows: cΔCVP-derived ΔPpl = k × ΔCVP, where k was the ratio of the change in airway pressure (ΔPaw) to the ΔCVP during airway occlusion test. Results Of the 14 patients enrolled in the study, 6 were excluded because correct positioning of the esophageal balloon could not be confirmed, leaving eight patients for analysis (mean age, 4.8 months). Three variables that reflected ΔPpl (ΔPes, ΔCVP, and cΔCVP-derived ΔPpl) were measured and yielded the following results: -6.7 ± 4.8, − -2.6 ± 1.4, and − -7.3 ± 4.5 cmH2O, respectively. The repeated measures correlation between cΔCVP-derived ΔPpl and ΔPes showed that cΔCVP-derived ΔPpl had good correlation with ΔPes (r = 0.84, p< 0.0001). Conclusions ΔPpl can be estimated reasonably accurately by ΔCVP using our method in assisted and unassisted spontaneous breathing children during mechanical ventilation.


2021 ◽  
Vol 61 ◽  
pp. 125-132
Author(s):  
Gianmaria Cammarota ◽  
Erminio Santangelo ◽  
Gianluigi Lauro ◽  
Federico Verdina ◽  
Ester Boniolo ◽  
...  
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Eric Sy ◽  
Jagadish Rao ◽  
Sherma Zacharias ◽  
Juan J. Ronco ◽  
James S. Lee

Objective. Postpneumonectomy patients may develop acute respiratory distress syndrome (ARDS). There is a paucity of data regarding the optimal management of mechanical ventilation for postpneumonectomy patients. Esophageal balloon pressure monitoring has been used in traditional ARDS patients to set positive end-expiratory pressure (PEEP) and minimize transpulmonary driving pressure ( Δ P L ), but its clinical use has not been previously described nor validated in postpneumonectomy patients. The primary objective of this report was to describe the potential clinical application of esophageal pressure monitoring to manage the postpneumonectomy patient with ARDS. Design. Case report. Setting. Surgical intensive care unit (ICU) of a university-affiliated teaching hospital. Patient. A 28-year-old patient was involved in a motor vehicle collision, with a right main bronchus injury, that required a right-sided pneumonectomy to stabilize his condition. In the perioperative phase, they subsequently developed ventilator-associated pneumonia, significant cumulative positive fluid balance, and ARDS. Interventions. Prone positioning and neuromuscular blockade were initiated. An esophageal balloon was inserted to direct ventilator management. Measurements and Main Results. V T was kept around 3.6 mL/kg PBW, Δ P L at ≤14 cm H2O, and plateau pressure at ≤30 cm H2O. Lung compliance was measured to be 37 mL/cm H2O. PEEP was optimized to maintain end-inspiratory transpulmonary pressure   P L < 15  cm H2O, and end-expiratory P L between 0 and 5 cm H2O. The maximal Δ P L was measured to be 11 cm H2O during the care of this patient. The patient improved with esophageal balloon-directed ventilator management and was eventually liberated from mechanical ventilation. Conclusions. The optimal targets for V T remain unknown in the postpneumonectomy patient. However, postpneumonectomy patients with ARDS may potentially benefit from very low V T and optimization of PEEP. We demonstrate the application of esophageal balloon pressure monitoring that clinicians could potentially use to limit injurious ventilation and improve outcomes in postpneumonectomy patients with ARDS. However, esophageal balloon pressure monitoring has not been extensively validated in this patient population.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Lorenzo Viola ◽  
Emanuele Russo ◽  
Marco Benni ◽  
Emiliano Gamberini ◽  
Alessandro Circelli ◽  
...  

Abstract Background This study was conceived to provide systematic data about lung mechanics during early phases of CoVID-19 pneumonia, as long as to explore its variations during prone positioning. Methods We enrolled four patients hospitalized in the Intensive Care Unit of “M. Bufalini” hospital, Cesena (Italy); after the positioning of an esophageal balloon, we measured mechanical power, respiratory system and transpulmonary parameters and arterial blood gases every 6 hours, just before decubitus change and 1 hour after prono-supination. Results Both respiratory system and transpulmonary compliance and driving pressure confirmed the pseudo-normal respiratory mechanics of early CoVID-19 pneumonia (respectively, CRS 40.8 ml/cmH2O and DPRS 9.7 cmH2O; CL 53.1 ml/cmH2O and DPL 7.9 cmH2O). Interestingly, prone positioning involved a worsening in respiratory mechanical properties throughout time (CRS,SUP 56.3 ml/cmH2O and CRS,PR 41.5 ml/cmH2O – P 0.37; CL,SUP 80.8 ml/cmH2O and CL,PR 53.2 ml/cmH2O – P 0.23). Conclusions Despite the severe ARDS pattern, respiratory system and lung mechanical properties during CoVID-19 pneumonia are pseudo-normal and tend to worsen during pronation. Trial registration Restrospectively registered.


2020 ◽  
Vol 1 (2) ◽  
pp. 39-51
Author(s):  
Ehab Daoud ◽  
Rebecca Shimabukuro

There have been a recent shortage of both critical care physicians and respiratory therapists with training in mechanical ventilation that is accentuated by the recent COVID-19 crisis. Hospitalists and primary care physicians find themselves more often dealing with and treating critically ill patients on mechanical ventilation without specific training. This two part review will try to explain and simplify some of the physiologic concepts of mechanical ventilation, strategies for managements of different diseases, monitoring, brief review of some of the common modes used for support and weaning during mechanical ventilation and to address some of the adverse effects associated with mechanical ventilation. We understand the complexity of the subject and this review would not be a substitute of seeking appropriate counselling, further training, and medical knowledge about mechanical ventilation. Further free resources are available to help clinicians who feel uncomfortable making decisions with such technology Keywords: Mechanical ventilation, Driving pressure, Compliance, Resistance, Capnometry, Dead space, ARDS, PEEP, auto-PEEP, Plateau pressure, esophageal balloon


2020 ◽  
Vol 08 (12) ◽  
pp. E1872-E1877
Author(s):  
Shiro Hayashi ◽  
Tsutomu Nishida ◽  
Shinji Kuriki ◽  
Li-sa Chang ◽  
Kazuki Aochi ◽  
...  

Abstract Background and study aims Fluoroscopy-guided gastrointestinal procedures (FGPs) are increasingly common. However, the radiation exposure (RE) to patients undergoing FGPs is still unclear. We examined the actual RE of FGPs. Patients and methods This retrospective, single-center cohort study included consecutive FGPs, including endoscopic retrograde cholangiopancreatography (ERCP), interventional endoscopic ultrasound (EUS), enteral stenting, balloon-assisted enteroscopy, tube placement, endoscopic injection sclerotherapy (EIS), esophageal balloon dilatation and repositioning for sigmoid volvulus, from September 2012 to June 2019. We measured the air kerma (AK, mGy), dose area product (DAP, Gycm2), and fluoroscopy time (FT, min) for each procedure. Results In total, 3831 patients were enrolled. Overall, 2778 ERCPs were performed. The median AK, DAP, and FT were as follows: ERCP: 109 mGy, 13.3 Gycm2 and 10.0 min; self-expandable enteral stenting (SEMS): 62 mGy, 12.4 Gycm2 and 10.4 min; tube placement: 40 mGy, 13.8 Gycm2 and 11.1 min; balloon-assisted enteroscopy: 43 mGy, 22.4 Gycm2 and 18.2 min; EUS cyst drainage (EUS-CD): 96 mGy, 18.3 Gycm2 and 10.4 min; EIS: 36 mGy, 8.1 Gycm2 and 4.4 min; esophageal balloon dilatation: 9 mGy, 2.2 Gycm2 and 1.8 min; and repositioning for sigmoid volvulus: 7 mGy, 4.7 Gycm2 and 1.6 min. Conclusion This large series reporting actual RE doses of various FGPs could serve as a reference for future prospective studies.


Sign in / Sign up

Export Citation Format

Share Document