Measured Behavior of a Reinforced Concrete Coupled Wall with Fully Post-Tensioned Coupling Beams

Author(s):  
Steven M. Barbachyn ◽  
Yahya C. Kurama ◽  
Michael J. McGinnis ◽  
Richard Sause
1998 ◽  
Vol 25 (5) ◽  
pp. 803-818 ◽  
Author(s):  
Kent A Harries ◽  
Denis Mitchell ◽  
Richard G Redwood ◽  
William D Cook

The design and nonlinear dynamic analyses of four coupled wall prototype structures are presented. Two ductile partially coupled and two ductile coupled wall structures are considered, each having reinforced concrete and steel coupling beams. The design of each of the prototype structures was based on the provisions of the 1995 National Building Code of Canada. Nonlinear dynamic analyses of each structure, using four different scaled earthquake ground motions are presented and the results discussed. Comparisons of the responses of the structures with concrete and steel coupling beams are made, demonstrating the advantages of using steel beams to couple reinforced concrete walls.Key words: composite construction, coupled wall, diagonally reinforced concrete coupling beam, "flexure critical" steel coupling beam, seismic design, "shear critical" steel coupling beam.


2000 ◽  
Vol 16 (4) ◽  
pp. 775-799 ◽  
Author(s):  
Kent A. Harries ◽  
Bingnian Gong ◽  
Bahram M. Shahrooz

The efficiency of coupled wall systems to resist lateral loads is well known. In order for the desired behavior of the coupled wall system to be attained, the coupling beams must be sufficiently strong and stiff. The coupling beams, however, must also yield before the wall piers, behave in a ductile manner, and exhibit significant energy-absorbing characteristics. This paper reviews the current state of the art for the design of conventional reinforced concrete, diagonally reinforced concrete, steel, and composite steel-concrete coupling beams. Although not exhaustive, critical aspects of the design of these systems are presented.


2018 ◽  
Vol 22 (6) ◽  
pp. 1284-1296 ◽  
Author(s):  
Yong Li ◽  
Ye Liu ◽  
Shaoping Meng

Coupled wall systems are often used in high-rise buildings in zone of high seismic risk to provide lateral resistance to earthquake loading. Once damaged, reinforced concrete coupling beams are costly and time-consuming to repair post-earthquake. To enhance the seismic resilience for coupled wall structures, a novel replaceable steel truss coupling beam is first introduced. The proposed replaceable steel truss coupling beam consists of chord members at the top and bottom, respectively, and two buckling-restrained energy dissipaters are employed in the diagonal direction. The energy dissipaters can yield first before the wall piers and dissipate large amounts of energy to protect the main structure under seismic loadings. In addition, the energy dissipaters can be easily installed and post-earthquake repaired through pin connection with the chord members. This article mainly focused on the numerical and theoretical analyses of the proposed replaceable steel truss coupling beam, and nonlinear analytical models were developed in PERFORM-3D. An 11-story prototype structure was designed per Chinese code. The seismic response of hybrid coupled wall system with replaceable steel truss coupling beams was evaluated using nonlinear time history analysis and compared with the response of reinforced concrete coupled wall system with reinforced concrete coupling beams under seismic loadings. Results show that the proposed replaceable steel truss coupling beam leads to a good seismic response with reduced interstory drifts of the systems and rotational demand in the beams and wall piers due to a large energy dissipation capacity and overstrength.


2021 ◽  
Author(s):  
Ashwin Poudel ◽  
Shahedreen Ameen ◽  
Rémy D. Lequesne ◽  
Andrés Lepage

2017 ◽  
Vol 10 ◽  
pp. 29-37 ◽  
Author(s):  
Seok-Joon Jang ◽  
Hyun-Do Yun ◽  
Sun-Woo Kim ◽  
Wan-Shin Park

2013 ◽  
Vol 831 ◽  
pp. 137-140
Author(s):  
Kang Min Lee ◽  
Liu Yi Chen ◽  
Rui Li ◽  
Keun Yeong Oh ◽  
Young Soo Chun

Coupling beams resist lateral loads efficiently is well known in coupled wall systems. In many cases, geometric limits result in coupling beams that are deep in relation to their clear span. Coupling beams with small depth-to-span ratio shall be reinforced with two intersecting groups of diagonally placed bars symmetrical along the mid-span. It's always hard to optimize construction projects. This paper used the finite element software (Abaqus) to analysis and simulate the nonlinear behavior of a new reinforcement called head bar and compared the results to the current standards.


Sign in / Sign up

Export Citation Format

Share Document