A Microscopic Analysis of the Impact of Torrential Rain on Traffic Flow Characteristics of Expressways in Beijing

CICTP 2015 ◽  
2015 ◽  
Author(s):  
Xiao Wang ◽  
Bin Jia ◽  
Junfang Tian
2016 ◽  
Vol 78 (7-2) ◽  
Author(s):  
Nurul ‘Azizah Mukhlas ◽  
Nordiana Mashros ◽  
Othman Che Puan ◽  
Sitti Asmah Hassan ◽  
Norhidayah Abdul Hassan ◽  
...  

Understanding traffic behavior for obtaining a smooth, safe and economical traffic operation requires a thorough knowledge of traffic flow parameters and their mutual relationships.Eventhough adverse weather can reduce traffic efficiencies, there are still questions to answer regarding the relationship between weather conditions and traffic flow at night. This paper presents an investigation of the rainfall effects to the traffic flow characteristics on atwo-lane rural highway during night time. The traffic data and corresponding rainfall data for uninterrupted road segment of Federal route 3 at Dungun, Terengganu were collected under road lighting condition during the north-east monsoon season. The effect of good weather condition, light rain, moderate rain and heavy rain conditions on speed, flow and density were quantified and compared. Results from the analysis indicate that mean speed, mean flow and mean density are reduced under various rainfall conditions. In general, the impact of good weather and various rainfall conditions on Greenshield’s fundamental traffic flow relationship have weak correlations except for the relationship between flow and density. The important points in the fundamental diagram derived from flow-density relationships indicated that critical density, maximum flow, critical speed, jam density and free flow speed of roadway all decrease as rainfall intensity increases. It can be concluded that traffic flow characteristics of two-lane rural highway in Terengganu are affected by rainfall conditions.


2021 ◽  
Vol 13 (19) ◽  
pp. 11052
Author(s):  
Mohammed Al-Turki ◽  
Nedal T. Ratrout ◽  
Syed Masiur Rahman ◽  
Imran Reza

Vehicle automation and communication technologies are considered promising approaches to improve operational driving behavior. The expected gradual implementation of autonomous vehicles (AVs) shortly will cause unique impacts on the traffic flow characteristics. This paper focuses on reviewing the expected impacts under a mixed traffic environment of AVs and regular vehicles (RVs) considering different AV characteristics. The paper includes a policy implication discussion for possible actual future practice and research interests. The AV implementation has positive impacts on the traffic flow, such as improved traffic capacity and stability. However, the impact depends on the factors including penetration rate of the AVs, characteristics, and operational settings of the AVs, traffic volume level, and human driving behavior. The critical penetration rate, which has a high potential to improve traffic characteristics, was higher than 40%. AV’s intelligent control of operational driving is a function of its operational settings, mainly car-following modeling. Different adjustments of these settings may improve some traffic flow parameters and may deteriorate others. The position and distribution of AVs and the type of their leading or following vehicles may play a role in maximizing their impacts.


2015 ◽  
Vol 744-746 ◽  
pp. 2053-2058
Author(s):  
Chang Hai Wei ◽  
Yu Huan Wang ◽  
Xu Wang

Conflicts between left-turning vehicles and pedestrians are common at signalized intersection in most developing countries. A new cellular automaton model is proposed to characterize left-turning traffic flow. New status update rules and driving behavior in affected areas and nonaffected areas are defined. Indexes of density, average speed and volume under different pedestrian violation rates are compared to quantify the impact of conflicts on left-turning traffic flow. Simulation results illustrate that pedestrian violations have a great impact on left-turning traffic flow and capacity of the intersection. Therefore, taking countermeasures will improve vehicle maneuvers, reduce the number of pedestrian accidents and increase the capacity of the intersection.


Author(s):  
Arne Kesting ◽  
Martin Treiber ◽  
Dirk Helbing

With an increasing number of vehicles equipped with adaptive cruise control (ACC), the impact of such vehicles on the collective dynamics of traffic flow becomes relevant. By means of simulation, we investigate the influence of variable percentages of ACC vehicles on traffic flow characteristics. For simulating the ACC vehicles, we propose a new car-following model that also serves as the basis of an ACC implementation in real cars. The model is based on the intelligent driver model (IDM) and inherits its intuitive behavioural parameters: desired velocity, acceleration, comfortable deceleration and desired minimum time headway. It eliminates, however, the sometimes unrealistic behaviour of the IDM in cut-in situations with ensuing small gaps that regularly are caused by lane changes of other vehicles in dense or congested traffic. We simulate the influence of different ACC strategies on the maximum capacity before breakdown and the (dynamic) bottleneck capacity after breakdown. With a suitable strategy, we find sensitivities of the order of 0.3, i.e. 1 per cent more ACC vehicles will lead to an increase in the capacities by about 0.3 per cent. This sensitivity multiplies when considering travel times at actual breakdowns.


2021 ◽  
Vol 9 (4) ◽  
pp. 378
Author(s):  
Jong Kwan Kim

As high vessel traffic in fairways is likely to cause frequent marine accidents, understanding vessel traffic flow characteristics is necessary to prevent marine accidents in fairways. Therefore, this study conducted semi-continuous spatial statistical analysis tests (the normal distribution test, kurtosis test and skewness test) to understand vessel traffic flow characteristics. First, a vessel traffic survey was conducted in a designated area (Busan North Port) for seven days. The data were collected using an automatic identification system and subsequently converted using semi-continuous processing methods. Thereafter, the converted data were used to conduct three methods of spatial statistical analysis. The analysis results revealed the vessel traffic distribution and its characteristics, such as the degree of use and lateral positioning on the fairway based on the size of the vessel. In addition, the generalization of the results of this study along with that of further studies will aid in deriving the traffic characteristics of vessels on the fairway. Moreover, these characteristics will reduce maritime accidents on the fairway, in addition to establishing the foundation for research on autonomous ships.


Sign in / Sign up

Export Citation Format

Share Document