scholarly journals Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity

Author(s):  
Arne Kesting ◽  
Martin Treiber ◽  
Dirk Helbing

With an increasing number of vehicles equipped with adaptive cruise control (ACC), the impact of such vehicles on the collective dynamics of traffic flow becomes relevant. By means of simulation, we investigate the influence of variable percentages of ACC vehicles on traffic flow characteristics. For simulating the ACC vehicles, we propose a new car-following model that also serves as the basis of an ACC implementation in real cars. The model is based on the intelligent driver model (IDM) and inherits its intuitive behavioural parameters: desired velocity, acceleration, comfortable deceleration and desired minimum time headway. It eliminates, however, the sometimes unrealistic behaviour of the IDM in cut-in situations with ensuing small gaps that regularly are caused by lane changes of other vehicles in dense or congested traffic. We simulate the influence of different ACC strategies on the maximum capacity before breakdown and the (dynamic) bottleneck capacity after breakdown. With a suitable strategy, we find sensitivities of the order of 0.3, i.e. 1 per cent more ACC vehicles will lead to an increase in the capacities by about 0.3 per cent. This sensitivity multiplies when considering travel times at actual breakdowns.

2022 ◽  
Vol 2 (1) ◽  
pp. 24-40
Author(s):  
Amirhosein Karbasi ◽  
Steve O’Hern

Road traffic crashes are a major safety problem, with one of the leading factors in crashes being human error. Automated and connected vehicles (CAVs) that are equipped with Advanced Driver Assistance Systems (ADAS) are expected to reduce human error. In this paper, the Simulation of Urban MObility (SUMO) traffic simulator is used to investigate how CAVs impact road safety. In order to define the longitudinal behavior of Human Drive Vehicles (HDVs) and CAVs, car-following models, including the Krauss, the Intelligent Driver Model (IDM), and Cooperative Adaptive Cruise Control (CACC) car-following models were used to simulate CAVs. Surrogate safety measures were utilized to analyze CAVs’ safety impact using time-to-collision. Two case studies were evaluated: a signalized grid network that included nine intersections, and a second network consisting of an unsignalized intersection. The results demonstrate that CAVs could potentially reduce the number of conflicts based on each of the car following model simulations and the two case studies. A secondary finding of the research identified additional safety benefits of vehicles equipped with collision avoidance control, through the reduction in rear-end conflicts observed for the CACC car-following model.


2016 ◽  
Vol 78 (7-2) ◽  
Author(s):  
Nurul ‘Azizah Mukhlas ◽  
Nordiana Mashros ◽  
Othman Che Puan ◽  
Sitti Asmah Hassan ◽  
Norhidayah Abdul Hassan ◽  
...  

Understanding traffic behavior for obtaining a smooth, safe and economical traffic operation requires a thorough knowledge of traffic flow parameters and their mutual relationships.Eventhough adverse weather can reduce traffic efficiencies, there are still questions to answer regarding the relationship between weather conditions and traffic flow at night. This paper presents an investigation of the rainfall effects to the traffic flow characteristics on atwo-lane rural highway during night time. The traffic data and corresponding rainfall data for uninterrupted road segment of Federal route 3 at Dungun, Terengganu were collected under road lighting condition during the north-east monsoon season. The effect of good weather condition, light rain, moderate rain and heavy rain conditions on speed, flow and density were quantified and compared. Results from the analysis indicate that mean speed, mean flow and mean density are reduced under various rainfall conditions. In general, the impact of good weather and various rainfall conditions on Greenshield’s fundamental traffic flow relationship have weak correlations except for the relationship between flow and density. The important points in the fundamental diagram derived from flow-density relationships indicated that critical density, maximum flow, critical speed, jam density and free flow speed of roadway all decrease as rainfall intensity increases. It can be concluded that traffic flow characteristics of two-lane rural highway in Terengganu are affected by rainfall conditions.


2021 ◽  
Vol 13 (19) ◽  
pp. 11052
Author(s):  
Mohammed Al-Turki ◽  
Nedal T. Ratrout ◽  
Syed Masiur Rahman ◽  
Imran Reza

Vehicle automation and communication technologies are considered promising approaches to improve operational driving behavior. The expected gradual implementation of autonomous vehicles (AVs) shortly will cause unique impacts on the traffic flow characteristics. This paper focuses on reviewing the expected impacts under a mixed traffic environment of AVs and regular vehicles (RVs) considering different AV characteristics. The paper includes a policy implication discussion for possible actual future practice and research interests. The AV implementation has positive impacts on the traffic flow, such as improved traffic capacity and stability. However, the impact depends on the factors including penetration rate of the AVs, characteristics, and operational settings of the AVs, traffic volume level, and human driving behavior. The critical penetration rate, which has a high potential to improve traffic characteristics, was higher than 40%. AV’s intelligent control of operational driving is a function of its operational settings, mainly car-following modeling. Different adjustments of these settings may improve some traffic flow parameters and may deteriorate others. The position and distribution of AVs and the type of their leading or following vehicles may play a role in maximizing their impacts.


Author(s):  
Jin I. Ge ◽  
Sergei S. Avedisov ◽  
Gábor Orosz

Wireless vehicle-to-vehicle communication technologies such as the dedicated short range communication (DSRC) may be used to assist drivers in sensing and responding to impalpable information such as the precise acceleration of vehicles ahead. In this paper, we investigate the impact of delayed acceleration feedback on traffic flow using a nonlinear car-following model. It is shown that acceleration feedback can improve the stability of uniform traffic flow, though excessive acceleration feedback leads to undesired high frequency oscillations. Additionally, time delays in the communication channel may shrink the stable domain by introducing mid-frequency oscillations. Finally, we show that one may stabilize vehicle platoons using delayed acceleration feedback even in cases when finite driver reaction time would destabilize the system. Our results may lead to more robust cruise control systems with increased driver comfort in connected vehicle environment.


2015 ◽  
Vol 744-746 ◽  
pp. 2053-2058
Author(s):  
Chang Hai Wei ◽  
Yu Huan Wang ◽  
Xu Wang

Conflicts between left-turning vehicles and pedestrians are common at signalized intersection in most developing countries. A new cellular automaton model is proposed to characterize left-turning traffic flow. New status update rules and driving behavior in affected areas and nonaffected areas are defined. Indexes of density, average speed and volume under different pedestrian violation rates are compared to quantify the impact of conflicts on left-turning traffic flow. Simulation results illustrate that pedestrian violations have a great impact on left-turning traffic flow and capacity of the intersection. Therefore, taking countermeasures will improve vehicle maneuvers, reduce the number of pedestrian accidents and increase the capacity of the intersection.


10.29007/r343 ◽  
2018 ◽  
Author(s):  
Kallirroi N. Porfyri ◽  
Evangelos Mintsis ◽  
Evangelos Mitsakis

Emerging developments in the field of automotive technologies, such as Adaptive Cruise Control (ACC) and Cooperative Adaptive Cruise Control (CACC) systems, are expected to enhance traffic efficiency and safety on highways and urban roads. For this reason, substantial effort has been made by researchers to model and simulate these automation systems over the last few years. This study aims to integrate a recently developed car-following model for ACC and CACC equipped vehicles in the microscopic traffic simulation tool SUMO; the implemented ACC/CACC simulation models originate from empirical ones, ensuring the collision-free property in the full-speed-range operation. Simulation experiments for different penetration rates of cooperative automated vehicles, desired time-gap settings and network topologies are conducted to test the validity of the proposed approach and to assess the impact of ACC and CACC equipped vehicles on traffic flow characteristics.


Sign in / Sign up

Export Citation Format

Share Document