Mechanical Properties of Icy Lunar Regolith: Application to ISRU on the Moon and Mars

Author(s):  
J. Atkinson ◽  
K. Zacny
1993 ◽  
Vol 46 (6) ◽  
pp. 285-300 ◽  
Author(s):  
Stewart W. Johnson ◽  
Koon Meng Chua

Knowledge of the lunar regolith is essential to success in lunar missions whether crewed or robotic. The regolith is the loose material overlying more intact strata on the Moon. It varies in thickness from several meters on the maria or lunar seas to many meters on the highlands of the Moon. The regolith is the material humans walked and drove on from 1969 to 1972. In the future, people will use it for radiation protection and as a resource for recovery of oxygen, silicon, iron, aluminum, and titanium. Implanted in the regolith by the solar wind are recoverable amounts of volatiles such as hydrogen and helium. Increasing our knowledge of the mechanical properties of the regolith will enable constructors of the 21st Century to build habitats, do mining, establish manufacturing, and erect telescopes on the Moon. We already know much of the regolith from robotic and astronaut missions to the Moon. There is much more to be learned.


1993 ◽  
Vol 46 (6) ◽  
pp. 313-325 ◽  
Author(s):  
John A. Happel

An important step in the exploration and colonization of the solar system is to build a permanently inhabited base on the Moon. The lunar environment is stark and hostile to unprotected humans. Structures are needed that protect the inhabitants from vacuum, radiation, extreme temperatures, dust, and meteoroids. Transporting the necessary construction materials from Earth is extremely expensive. Fortunately, lunar structures can be built utilizing indigenous materials. The locally available materials include lunar regolith, cast regolith, glass and glass composites, metals and concrete. Their mechanical properties are summarized and their suitability for lunar construction is evaluated. The most promising materials are cast regolith and lunar glass. Several lunar bases concepts utilizing indigenous materials are described and evaluated. Precast modules and large cast in place structures can be fabricated from lunar concrete. Large cylindrical modules, curved and flat panels and arches cast from lunar regolith are also feasible. A tied arch system is considered very promising because of its structural efficiency.


2020 ◽  
Vol 13 (1) ◽  
pp. 48
Author(s):  
Hanjie Song ◽  
Chao Li ◽  
Jinhai Zhang ◽  
Xing Wu ◽  
Yang Liu ◽  
...  

The Lunar Penetrating Radar (LPR) onboard the Yutu-2 rover from China’s Chang’E-4 (CE-4) mission is used to probe the subsurface structure and the near-surface stratigraphic structure of the lunar regolith on the farside of the Moon. Structural analysis of regolith could provide abundant information on the formation and evolution of the Moon, in which the rock location and property analysis are the key procedures during the interpretation of LPR data. The subsurface velocity of electromagnetic waves is a vital parameter for stratigraphic division, rock location estimates, and calculating the rock properties in the interpretation of LPR data. In this paper, we propose a procedure that combines the regolith rock extraction technique based on local correlation between the two sets of LPR high-frequency channel data and the common offset semblance analysis to determine the velocity from LPR diffraction hyperbola. We consider the heterogeneity of the regolith and derive the relative permittivity distribution based on the rock extraction and semblance analysis. The numerical simulation results show that the procedure is able to obtain the high-precision position and properties of the rock. Furthermore, we apply this procedure to CE-4 LPR data and obtain preferable estimations of the rock locations and the properties of the lunar subsurface regolith.


2021 ◽  
Vol 7 (32) ◽  
pp. eabi7647
Author(s):  
John A. Tarduno ◽  
Rory D. Cottrell ◽  
Kristin Lawrence ◽  
Richard K. Bono ◽  
Wentao Huang ◽  
...  

Determining the presence or absence of a past long-lived lunar magnetic field is crucial for understanding how the Moon’s interior and surface evolved. Here, we show that Apollo impact glass associated with a young 2 million–year–old crater records a strong Earth-like magnetization, providing evidence that impacts can impart intense signals to samples recovered from the Moon and other planetary bodies. Moreover, we show that silicate crystals bearing magnetic inclusions from Apollo samples formed at ∼3.9, 3.6, 3.3, and 3.2 billion years ago are capable of recording strong core dynamo–like fields but do not. Together, these data indicate that the Moon did not have a long-lived core dynamo. As a result, the Moon was not sheltered by a sustained paleomagnetosphere, and the lunar regolith should hold buried 3He, water, and other volatile resources acquired from solar winds and Earth’s magnetosphere over some 4 billion years.


2019 ◽  
Vol 116 (23) ◽  
pp. 11165-11170 ◽  
Author(s):  
Cheng Zhu ◽  
Parker B. Crandall ◽  
Jeffrey J. Gillis-Davis ◽  
Hope A. Ishii ◽  
John P. Bradley ◽  
...  

The source of water (H2O) and hydroxyl radicals (OH), identified on the lunar surface, represents a fundamental, unsolved puzzle. The interaction of solar-wind protons with silicates and oxides has been proposed as a key mechanism, but laboratory experiments yield conflicting results that suggest that proton implantation alone is insufficient to generate and liberate water. Here, we demonstrate in laboratory simulation experiments combined with imaging studies that water can be efficiently generated and released through rapid energetic heating like micrometeorite impacts into anhydrous silicates implanted with solar-wind protons. These synergistic effects of solar-wind protons and micrometeorites liberate water at mineral temperatures from 10 to 300 K via vesicles, thus providing evidence of a key mechanism to synthesize water in silicates and advancing our understanding on the origin of water as detected on the Moon and other airless bodies in our solar system such as Mercury and asteroids.


This year marks not only the twenty-fifth anniversary of the first manned landing on the Moon ( Apollo 11 ) but also the thirty-fifth anniversary of the first planetary missions. The latter was the Soviet Luna 1 and 2 carrying magnetometers to test whether the Moon possessed a global magnetic field. Luna 1 passed the Moon but Luna 2 crash landed, both showed that the Moon had no magnetic field as large as 50 or 100 y (1 y = 10 -5 G = 10 -9 T). Such an experiment had been proposed by S. Chapman ( Nature 160, 395 (1947)) to test a speculative hypothesis concerning magnetic fields of cosmic bodies by P. M. S. Blackett ( Nature 159, 658 (1947)). Chapman’s suggestion was greeted by general amusement: 12 years later it was accomplished. Also two years after the launch of Sputnik 1 in 1957, Luna 3 was launched and for the first time viewed the far side of the Moon on 9 October, 1959. Laboratories from many countries were invited by NASA to take part in the analysis of rocks returned from the Apollo missions and later from the Soviet automated return of cores from the lunar regolith. British laboratories were very active in this work, and a review of the results of the new understanding of the Moon as a result of space missions formed the subject of a Royal Society Discussion Meeting in 1975 (published in Phil. Trans. R. Soc. Lond . A 285). British laboratories received samples from the automated Soviet missions that took cores from the regolith and returned them to Earth. Work on Luna 16 and 20 samples were published in Phil. Trans. R. Soc. Lond . A 284 131-177 (1977) and on Luna 24 in Phil. Trans. R. Soc. Lond . A 297 1-50 (1979).


2020 ◽  
Vol 258 ◽  
pp. 120315
Author(s):  
Juliana Moraes Neves ◽  
Sivakumar Ramanathan ◽  
Prannoy Suraneni ◽  
Richard Grugel ◽  
Aleksandra Radlińska

2013 ◽  
Vol 58 (2) ◽  
pp. 551-556
Author(s):  
Stanisław Bednarz ◽  
Mirosław Rzyczniak ◽  
Andrzej Gonet ◽  
Karol Seweryn

The results investigations of a soil having similar properties as lunar regolith performed at the Department of Drilling and Geoengineering, Faculty of Drilling, Oil and Gas, AGH University of Science and Technology in Kraków are presented in this paper. The research was carried out jointly with the Space Research Centre, Polish Academy of Sciences in Warsaw. The objective of the cooperation was to minimize the cost of tests of penetrator KRET, which will be used on the surface of the Moon. The American lunar regolith (e.g. CHENOBI) was used as reference soil. The most important properties were presented graphically in the form of figures and tables: grain size distribution, selected physical properties (bulk density, colour), selected mechanical parameters (shear strength, inner friction strength, cohesion). As a result the first Polish lunar soil analog AGK-2010 was produced.


Sign in / Sign up

Export Citation Format

Share Document