The Dynamic Modulus of Asphalt Mortar and Its Master Curve

Author(s):  
Ming-feng Chang ◽  
Dong-dong Zhang ◽  
Yong Liu ◽  
Yan-ping Sheng
Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1667 ◽  
Author(s):  
Linhao Gu ◽  
Luchuan Chen ◽  
Weiguang Zhang ◽  
Haixia Ma ◽  
Tao Ma

The main objective of this paper was to develop a mesostructure-based finite element model of rubber modified asphalt mixture to predict both the dynamic modulus master curve and phase angle master curve under a large frequency range. The asphalt mixture is considered as a three-phase material consisting of aggregate, asphalt mortar, and air void. The mesostructure of the asphalt mixture was digitized by a computed tomography (CT) scan and implemented into finite element software. The 2S2P1D model was used to obtain the viscoelastic information of an asphalt mortar under a large range of frequencies and temperatures. The continuous spectrum of the 2S2P1D model was converted to a discrete spectrum and characterized by the generalized Maxwell model for numerical simulation. The Prony series parameters of the generalized Maxwell model and the elastic modulus of the aggregates were inputted into the finite element analysis as material properties. The dynamic modulus tests of a rubber modified asphalt mortar and asphalt mixture were conducted under different temperatures and loading frequencies. The dynamic modulus master curve and phase angle master curve of both asphalt mortar and asphalt mixture were constructed. The frequency of the finite element simulations of the dynamic modulus tests ranged from 10−6 to 104. The dynamic modulus and phase angle of the asphalt mixture was calculated and the master curves were compared with the master curves obtained from the experimental data. Furthermore, the effect of the elastic modulus of aggregates on the master curves was analyzed. Acceptable agreement between dynamic modulus master curves obtained from experimental data and simulation results was achieved. However, large errors between phase angle master curves appeared at low frequencies. A method was proposed to improve the prediction of the phase angle master curve by adjusting the equilibrium modulus of the asphalt mortar.


Author(s):  
Xinqiang WANG ◽  
Guoqing WANG ◽  
Lusheng QIN ◽  
Huilin MENG ◽  
Xiaosen WANG ◽  
...  

2018 ◽  
Vol 30 (11) ◽  
pp. 04018290 ◽  
Author(s):  
Ningyi Su ◽  
Feipeng Xiao ◽  
Jingang Wang ◽  
Serji Amirkhanian

2017 ◽  
Vol 23 (5) ◽  
pp. 661-671 ◽  
Author(s):  
Nader SOLATIFAR ◽  
Amir KAVUSSI ◽  
Mojtaba ABBASGHORBANI ◽  
Henrikas SIVILEVIČIUS

This paper presents a simple method to determine dynamic modulus master curve of asphalt layers by con­ducting Falling Weight Deflectometer (FWD) for use in mechanistic-empirical rehabilitation. Ten new and rehabilitated in-service asphalt pavements with different physical characteristics were selected in Khuzestan and Kerman provinces in south of Iran. FWD testing was conducted on these pavements and core samples were taken. Witczak prediction model was used to predict dynamic modulus master curves from mix volumetric properties as well as the bitumen viscosity characteristics. Adjustments were made using FWD results and the in-situ dynamic modulus master curves were ob­tained. In order to evaluate the efficiency of the proposed method, the results were compared with those obtained by us­ing the developed procedure of the state-of-the-practice, Mechanistic-Empirical Pavement Design Guide (MEPDG). Re­sults showed the proposed method has several advantages over MEPDG including: (1) simplicity in directly constructing in-situ dynamic modulus master curve; (2) developing in-situ master curve in the same trend with the main predicted one; (3) covering the large differences between in-situ and predicted master curve in high frequencies; and (4) the value obtained for the in-situ dynamic modulus is the same as the value measured by the FWD for a corresponding frequency.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5051
Author(s):  
Fei Zhang ◽  
Lan Wang ◽  
Chao Li ◽  
Yongming Xing

To identify the most accurate approach for constructing of the dynamic modulus master curves for warm mix crumb rubber modified asphalt mixtures and assess the feasibility of predicting the phase angle master curves from the dynamic modulus ones. The SM (Sigmoidal model) and GSM (generalized sigmoidal model) were utilized to construct the dynamic modulus master curve, respectively. Subsequently, the master curve of phase angle could be predicted from the master curve of dynamic modulus in term of the K-K (Kramers–Kronig) relations. The results show that both SM and GSM can predict the dynamic modulus very well, except that the GSM shows a slightly higher correlation coefficient than SM. Therefore, it is recommended to construct the dynamic modulus master curve using GSM and obtain the corresponding phase angle master curve in term of the K-K relations. The Black space diagram and Wicket diagram were utilized to verify the predictions were consistent with the LVE (linear viscoelastic) theory. Then the master curve of storage modulus and loss modulus were also obtained. Finally, the creep compliance and relaxation modulus can be used to represent the creep and relaxation properties of warm-mix crumb rubber-modified asphalt mixtures.


Author(s):  
Ramon Bonaquist ◽  
Donald W. Christensen

A dynamic modulus master curve for asphalt concrete is a critical input for flexible pavement design in the mechanistic–empirical pavement design guide developed in NCHRP Project 1–37A. The recommended testing to develop the modulus master curve is presented in AASHTO Provisional Standard TP62–03, Standard Method of Test for Determining Dynamic Modulus of Hot-Mix Asphalt Concrete Mixtures. It includes testing at least two replicate specimens at five temperatures between 14°F and 130°F (–10°C and 54.4°C) and six loading rates between 0.1 and 25 Hz. The master curve and shift factors are then developed from this database of 60 measured moduli using numerical optimization. The testing requires substantial effort, and there is much overlap in the measured data, which is not needed when numerical methods are used to perform the time–temperature shifting for the master curve. This paper presents an alternative to the testing sequence specified in AASHTO TP62–03. It requires testing at only three temperatures between 40°F and 115°F (4.4°C and 46.1°C) and four rates of loading between 0.01 and 10 Hz. An analysis of data collected using the two approaches shows that comparable master curves are obtained. This alternative testing sequence can be used in conjunction with the simple performance test system developed in NCHRP Project 9–29 to develop master curves for structural design.


2015 ◽  
Vol 2 (1) ◽  
pp. 124 ◽  
Author(s):  
Mouhamed Lamine Chérif Aidara ◽  
Makhaly Ba ◽  
Alan Carter

The main purpose of this paper is to model the master curve of dynamic modulus |E*| for Hot Mix Asphalt mix designed with aggregate from Senegal named basalt of Diack and quartzite of Bakel. The prediction model used is the Witczak model, used in the Mechanistic-Empirical Pavement Design Guide. A study has been conducted in the Laboratory of Pavements and Bituminous Materials. Six different HMA (BBSG 0/14 mm) were subjected to complex modulus test by tension-compression according to the European or Canadian procedure using the same range of temperatures and frequencies. For each mixture studied the uniqueness of modulus curves in the Cole-Cole or in Black diagrams have shown that the asphalt mixes are thermorheologically simple materials and the Canadian test process is suitable for determining the HMA complex modulus mix designed with the aggregates from Senegal. This implies their tender with the principle of time-temperature equivalence. The test results were used to model the master curves of HMA studied. A correlation with the results of dynamic modulus measured have shown an accuracy of R2 = 0,99 and p = 0,00 in STATISTICA software, which allows to conclude that the sigmoidal model has good modeling of the dynamic modulus.


Sign in / Sign up

Export Citation Format

Share Document