scholarly journals Mesostructural Modeling of Dynamic Modulus and Phase Angle Master Curves of Rubber Modified Asphalt Mixture

Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1667 ◽  
Author(s):  
Linhao Gu ◽  
Luchuan Chen ◽  
Weiguang Zhang ◽  
Haixia Ma ◽  
Tao Ma

The main objective of this paper was to develop a mesostructure-based finite element model of rubber modified asphalt mixture to predict both the dynamic modulus master curve and phase angle master curve under a large frequency range. The asphalt mixture is considered as a three-phase material consisting of aggregate, asphalt mortar, and air void. The mesostructure of the asphalt mixture was digitized by a computed tomography (CT) scan and implemented into finite element software. The 2S2P1D model was used to obtain the viscoelastic information of an asphalt mortar under a large range of frequencies and temperatures. The continuous spectrum of the 2S2P1D model was converted to a discrete spectrum and characterized by the generalized Maxwell model for numerical simulation. The Prony series parameters of the generalized Maxwell model and the elastic modulus of the aggregates were inputted into the finite element analysis as material properties. The dynamic modulus tests of a rubber modified asphalt mortar and asphalt mixture were conducted under different temperatures and loading frequencies. The dynamic modulus master curve and phase angle master curve of both asphalt mortar and asphalt mixture were constructed. The frequency of the finite element simulations of the dynamic modulus tests ranged from 10−6 to 104. The dynamic modulus and phase angle of the asphalt mixture was calculated and the master curves were compared with the master curves obtained from the experimental data. Furthermore, the effect of the elastic modulus of aggregates on the master curves was analyzed. Acceptable agreement between dynamic modulus master curves obtained from experimental data and simulation results was achieved. However, large errors between phase angle master curves appeared at low frequencies. A method was proposed to improve the prediction of the phase angle master curve by adjusting the equilibrium modulus of the asphalt mortar.

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5051
Author(s):  
Fei Zhang ◽  
Lan Wang ◽  
Chao Li ◽  
Yongming Xing

To identify the most accurate approach for constructing of the dynamic modulus master curves for warm mix crumb rubber modified asphalt mixtures and assess the feasibility of predicting the phase angle master curves from the dynamic modulus ones. The SM (Sigmoidal model) and GSM (generalized sigmoidal model) were utilized to construct the dynamic modulus master curve, respectively. Subsequently, the master curve of phase angle could be predicted from the master curve of dynamic modulus in term of the K-K (Kramers–Kronig) relations. The results show that both SM and GSM can predict the dynamic modulus very well, except that the GSM shows a slightly higher correlation coefficient than SM. Therefore, it is recommended to construct the dynamic modulus master curve using GSM and obtain the corresponding phase angle master curve in term of the K-K relations. The Black space diagram and Wicket diagram were utilized to verify the predictions were consistent with the LVE (linear viscoelastic) theory. Then the master curve of storage modulus and loss modulus were also obtained. Finally, the creep compliance and relaxation modulus can be used to represent the creep and relaxation properties of warm-mix crumb rubber-modified asphalt mixtures.


2011 ◽  
Vol 261-263 ◽  
pp. 824-828 ◽  
Author(s):  
Qian Zhang ◽  
Shu Wei Goh ◽  
Zhan Ping You

The objective of this study is to investigate the possibility of using waste plastic as an additive to modify asphalt mixtures thereby reducing the waste plastic stream in our environment. High density polyethylene plastic bags obtained from the retail store were shredded into chips and added into asphalt mixtures at the rate of 0% (control sample), 2, 5 and 8% based on binder weight. Three different temperatures of 4, 21.3 and 39.2°C and frequencies ranging from 0.1 to 25 Hz were used in the dynamic modulus test. It was found that most of the asphalt mixtures modified with waste plastic have higher dynamic modulus when compared with the control samples. However, no significant trend on phase angle was found among all the samples tested based on the test results. In this study, it was found that the modified asphalt mixture with 2% waste plastic had the highest dynamic modulus and phase angle. Based on the test results, it was found that plastic modified asphalt mixture will have a better performance under intermediate and high temperature conditions.


2019 ◽  
Vol 9 (13) ◽  
pp. 2747 ◽  
Author(s):  
Hui Wang ◽  
Shihao Zhan ◽  
Guojun Liu

Asphalt migration is one of the significant detrimental effects on asphalt pavement performance. In order to simulate the state after the occurrence of asphalt migration amid asphalt pavement layers and further investigate the effects of asphalt migration on the dynamic modulus of asphalt mixture, samples with different asphalt contents layers were firstly separated into the upper and lower half portions and then compacted together. By conducting the dynamic modulus test with the Superpave Simple Performance Tester (SPT), the variation laws of the dynamic modulus (|E*|) and the phase angle (δ) at different testing temperatures and loading frequencies were analyzed in this paper. Further, the dynamic modulus and the stiffness parameter (|E*|/sinδ) at the loading frequency of 10 Hz and testing temperature of 50 °C were illustrated. Simultaneously, the master curves of the dynamic modulus and phase angle of asphalt mixtures under different testing conditions were constructed to better investigate the effects of asphalt migration on the dynamic modulus by means of Williams–Landel–Ferry (WLF) equation and Sigmoidal function. Results show that, after the asphalt migration, the dynamic modulus of asphalt mixtures increase with the increasing loading frequency while they decrease with the increasing testing temperature; the dynamic modulus and the stiffness parameter are the highest when asphalt mixtures have the optimum asphalt content layers, and then decrease with the incremental difference of asphalt content in the upper and lower half portions. Besides this, different from the master curves of dynamic modulus, the master curves of phase angle firstly increase with the increase of loading frequency to the highest point and then decrease with the further increase of loading frequency and are not as smooth as that of dynamic modulus. It can be concluded that the asphalt migration has compromised the mixture’s mechanical structure, and the more asphalt migrates, the weaker the mechanical properties of asphalt mixture will be. Additionally, based on the shift factors and master curves in the time–temperature superposition principle (TTSP), the effects of asphalt migration on the dynamic modulus and the variation laws of the dynamic modulus of asphalt mixture after the occurrence of asphalt migration can be better construed at the quantitative level.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1133 ◽  
Author(s):  
Senja Rum Harnaeni ◽  
Florentina Pungky Pramesti ◽  
Arif Budiarto ◽  
Ary Setyawan ◽  
Muhammad Imran Khan ◽  
...  

The aim of this study is to assess the viscoelastic parameters (i.e., phase angle and dynamic modulus) of asphalt concrete-wearing course (AC-WC) and hot rolled sheet-wearing course (HRS-WC) mixtures obtained from the dynamic modulus test. This study was accomplished in four stages: determining optimum asphalt content using Marshall mix design procedure, stability and flow parameters from Marshall test, viscoelastic parameters from dynamic modulus testing and finally the generation of dynamic modulus master curves at a reference temperature of 25 °C. The results showed that at the same temperature, the dynamic modulus of AC-WC and HRS-WC mixtures tended to increase with escalating the loading frequency, while dynamic modulus decreases with an increase in the test temperature at constant loading frequency. Furthermore, the dynamic modulus of the AC-WC mixture was recorded as 100% higher than the HRS-WC asphalt mixture. The phase angle, however, showed contradictory behavior with that shown in dynamic modulus. The phase angle of the AC-WC mixture and HRS-WC asphalt mixture showed almost the same behavior. Similarly, the dynamic modulus master curves of AC-WC and HRS-WC asphalt mixtures can be used to predict the dynamic modulus at the frequency range of 0.01 to 10 Hz and a reference temperature of 25 °C. The results were also used to evaluate the rutting and fatigue performance of AC-WC and HRS-WC.


2011 ◽  
Vol 243-249 ◽  
pp. 4226-4230
Author(s):  
Li Tao Geng ◽  
Rui Bo Ren ◽  
Li Zhi Wang ◽  
Cui Lan Gao

Two types of high modulus asphalt mixtures are introduced. Dynamic modulus and phase angle of these two mixtures are tested with Simple Performance Testing System under different temperatures, loading frequencies and confining pressures. Based on time-temperature superposition principle, dynamic modulus master curves and time-temperature shift factors at reference temperature are obtained using nonlinear square least square regression, and phase angle master curves are constructed utilizing the same time-temperature shift factors. The influence of confining pressure on mechanical properties of high modulus asphalt mixture is discussed.


2013 ◽  
Vol 423-426 ◽  
pp. 1110-1113
Author(s):  
Jin Cheng Wei ◽  
Jin Li

To study the dynamic modulus characteristic of LSPM mixes, dynamic modulus test was conducted for Large Stone Permeable Asphalt Mixtures (LSPM ) with neat asphalt and with modified asphalt and the range of dynamic modulus values for LSPM was determined and the dynamic modulus master curves were developed. The magnitude of the dynamic modulus decreased with an increase in temperature and increased with an increase in the frequency. The phase angle decreased as the frequency increased at low temperature. With temperature increase, there was a transition interval, where the phase angle increased up to frequencies of 0.5 Hz, and then it started to decrease as frequency increased. After the transition interval, the phase angle increased with an increase in frequency. Master curves developed by sigmoidal function showed that LSPM with modified asphalt exhibited higher dynamic modulus values at middle and high frequencies and lower dynamic modulus values at low frequencies.


2011 ◽  
Vol 243-249 ◽  
pp. 4220-4225
Author(s):  
Rui Bo Ren ◽  
Li Tao Geng ◽  
Li Zhi Wang ◽  
Peng Wang

To study the mechanical properties of high modulus asphalt mixtures, dynamic modulus and phase angle of these two mixtures are tested with Simple Performance Testing System under different temperatures, loading frequencies and confining pressures. Testing results show the superiority of high modulus asphalt mixture in aspect of high temperature performance. Furthermore, the changing rules of dynamic modulus and phase angle are also discussed.


2011 ◽  
Vol 243-249 ◽  
pp. 4112-4118
Author(s):  
Min Jiang Zhang ◽  
Gang Chen ◽  
Li Xia Hou ◽  
Li Ping Zhang

Based on the viscoelasticity theory and the data of creep test, Burgers model was established, which was used to study the viscoelastic property of SBR asphalt mixtures, and the viscoelastic constitutive relation was obtained. Using the finite element method, the temperature stresses field was calculated under the environmental conditions and the thermal stresses of SBR modified asphalt pavement was given at the last part of this paper. The study indicated that SBR modified asphalt mixtures have the advantage over common asphalt mixture in low-temperature performance.


2011 ◽  
Vol 287-290 ◽  
pp. 1155-1163
Author(s):  
Shao Long Huang ◽  
Fan Shen ◽  
Qing Jun Ding

In this paper, recycled PE was added directly to the asphalt mixture to prepare high modulus asphalt mixture. To study the influence of the dosage and molecular weight of recycled PE on the performance of asphalt mixture, three kinds of recycled PE with different molecular weight and three asphalt binders (Conventional, SBS Modified and PE Modified) were used to prepare eight kinds of asphalt mixture. Various tests, including dynamic modulus, wheel tracking and Lottman test, were conducted to evaluate the performance of them. The results showed that 1) the dynamic modulus of asphalt mixture modified by recycled PE is higher than the normal mixture and mixture prepared with SBS modified asphalt binder; 2) adding recycled PE directly into the asphalt mixture during mixing is more effective than preparing asphalt mixture with PE modified asphalt binder in making high modulus asphalt mixture; 3) the recycled PE used to produce high modulus asphalt mixture should have certain big molecular weight, more than 27,000, and the dosage of recycled PE should be no less than 0.4% of the total weight of asphalt mixture. The performance tests indicted the good high temperature deformation resistance property of asphalt mixture modified by recycled PE.


Sign in / Sign up

Export Citation Format

Share Document