Closure to “Post-Local-Buckling Behavior of Continuous Beams”

1976 ◽  
Vol 102 (1) ◽  
pp. 287-289
Author(s):  
Shien T. Wang ◽  
Sheng S. Yeh
1974 ◽  
Vol 100 (6) ◽  
pp. 1169-1187
Author(s):  
Shien T. Wang ◽  
Sheng S. Yeh

2011 ◽  
Vol 374-377 ◽  
pp. 2430-2436
Author(s):  
Gang Shi ◽  
Zhao Liu ◽  
Yong Zhang ◽  
Yong Jiu Shi ◽  
Yuan Qing Wang

High strength steel sections have been increasingly used in buildings and bridges, and steel angles have also been widely used in many steel structures, especially in transmission towers and long span trusses. However, high strength steel exhibits mechanical properties that are quite different from ordinary strength steel, and hence, the local buckling behavior of steel equal angle members under axial compression varies with the steel strength. However, there is a lack of research on the relationship of the local buckling behavior of steel equal angle members under axial compression with the steel strength. A finite element model is developed in this paper to analyze the local buckling behavior of steel equal angle members under axial compression, and study its relationship with the steel strength and the width-to-thickness ratio of the angle leg. The finite element analysis (FEA) results are compared with the corresponding design method in the American code AISC 360-05, which provides a reference for the related design.


2020 ◽  
Vol 1 (2) ◽  
pp. 38-39
Author(s):  
Tran Tuan Nam

In a seismic incident, the structural steel columns are commonly damaged with local buckling formulation at either the top or bottom ends. This study analyzes and simulates the hysteretic behavior of a hollow square steel column under cyclic loading by adopting the fiber-element approach. This method discretizes the hinge zone into a series of fibers and considers buckling behavior of those fibers along the column wall. The analytical result was achieved in good agreement with the component test.


2021 ◽  
Vol 1016 ◽  
pp. 170-176
Author(s):  
Yoshihisa Kaneko ◽  
Tomohiro Kubomae ◽  
Naofumi Kawakami ◽  
Hiroyuki Hagiwara ◽  
Makoto Uchida

The effect of layer thickness on hardness and buckling behavior was investigated on Ni-Co-Cu/Cu multilayered films. The Ni-Co-Cu/Cu multilayered films were grown on annealed copper substrates by electrodeposition. We fabricated the multilayered films with various layer thicknesses ranging from 10 nm to 1000 nm. First, dependence of Vickers hardness on the Cu layer thickness was investigated. When the Ni-Co-Cu layer had the constant thickness of 75 nm and the Cu layer thickness was smaller than 75 nm, the hardness increased rapidly with decreasing Cu layer thickness. Subsequently, compressive tests were conducted on the multilayered films having the component layers ranging from100 nm to 1000 nm, where the hardness values did not change rapidly with layer thickness. The copper substrates coated with the multilayered films were compressed until 20% strain. From SEM surface observations after the compressive tests, formations of band-like structures having a certain thickness were recognized. Cross-sectional observation revealed that some band-like structures were formed as a result of local buckling of the multilayered film. The vertical thickness of the bank-like structures increased linearly with increasing component layer thickness.


2018 ◽  
Vol 22 (5) ◽  
pp. 04018026
Author(s):  
Parisa Shadan ◽  
Mohammad Zaman Kabir

2020 ◽  
Vol 23 (10) ◽  
pp. 2204-2219
Author(s):  
Jun Wan ◽  
Jian Cai ◽  
Yue-Ling Long ◽  
Qing-Jun Chen

Based on the energy method, this article presents a theoretical study on the elastic local buckling of steel plates in rectangular concrete-filled steel tubular columns with binding bars subjected to eccentric compression. The formulas for elastic local buckling strength of the steel plates in eccentrically loaded rectangular concrete-filled steel tubular columns with binding bars are derived, assuming that the loaded edges are clamped and the unloaded edges of the steel plate are elastically restrained against rotation. Then, the experimental results are compared with these formulas, which exhibits good agreement. Subsequently, the formulas are used to study the elastic local buckling behavior of steel plates in rectangular concrete-filled steel tubular columns with binding bars under eccentric compression. It is found that the local buckling stress of steel plates in eccentrically loaded rectangular concrete-filled steel tubular columns with binding bars is significantly influenced by the stress gradient coefficient, width-to-thickness ratio, and the longitudinal spacing of binding bars. With the decrease of width–thickness ratios or the longitudinal spacing of binding bars or with the increase of the stress gradient coefficient, the local buckling stress increases. Furthermore, the influence of the longitudinal spacing of binding bar is more significant than the stress gradient coefficients. Finally, appropriate limitation for depth-to-thickness ratios ( D/ t), width-to-thickness ratios ( B/ t), and binding bar longitudinal spacing at various stress gradient coefficients ( α0) corresponding to different cross-sectional aspect ratios ( D/ B) are suggested for the design of rectangular concrete-filled steel tubular columns with binding bars under eccentric compression.


Sign in / Sign up

Export Citation Format

Share Document