scholarly journals ANALYSIS OF A CANTILEVER COLUMN SUBJECTED TO CYCLIC LOADING

2020 ◽  
Vol 1 (2) ◽  
pp. 38-39
Author(s):  
Tran Tuan Nam

In a seismic incident, the structural steel columns are commonly damaged with local buckling formulation at either the top or bottom ends. This study analyzes and simulates the hysteretic behavior of a hollow square steel column under cyclic loading by adopting the fiber-element approach. This method discretizes the hinge zone into a series of fibers and considers buckling behavior of those fibers along the column wall. The analytical result was achieved in good agreement with the component test.

Author(s):  
Mohammad Reza Khedmati ◽  
Masoud Nazari ◽  
Amir Foad Khalaj

In this paper an investigation is presented based on numerical modeling of locally corroded tubular members. A parametric finite element approach was used in order to simulate behavior of damaged members under axial compressive loads. The results were then examined against an available experimental test. Validated models are used to derive a semi-empirical formula for predicting ultimate strength of locally damaged tubes as a function of corrosion dimensions. Geometry of corrosion can be defined by its depth, length, width and location of damage along the tube. In this study it is focused on the effect of some parameters that have not been addressed yet by other researchers, e.g. slenderness of the tubes and location of patch corrosion. It was found that location of corrosion has great effect on reduction of ultimate strength. Effect of corrosion geometry was also studied and it was shown that tubes with different corrosion dimensions show different behaviors under compressive loads. In cases with severe corrosion damages, the occurrence of local buckling plays an important role on reduction of ultimate strength and deformation of damaged region. The effect of tubular slenderness on behavior of axially compressed tubes was also studied and formulated.


2014 ◽  
Vol 1049-1050 ◽  
pp. 264-267
Author(s):  
Zheng Zhang ◽  
Yong Qian Zheng ◽  
Xue Chao Chen ◽  
Zhi Bin Wang

The mechanical properties of axial compression aluminium members under cyclic loading were studied and compared with those of steel columns. In order to proceed to theoretical study on hysteretic behavior of aluminium columns, a method by finite element analysis was proposed. The method was based on FEA software, ANSYS. The analysis methods considered the effects of material nonlinearity, geometrical nonlinearity and initial imperfection. On this basis, hysteretic curves, reversal skeleton curves and stiffness degradation curves of 6061-T6 aluminium columns, 6061-T4 aluminium columns and Q235 steel columns under axial cyclic loading were obtained and compared. Results show that the hysteretic behavior of the aluminium columns is similar with the low carbon steel columns and is significantly influenced by constitutive relationship.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 914
Author(s):  
Junkai Lu ◽  
Weichuang Liu ◽  
Yong Ding ◽  
Yingying Li ◽  
Shuquan Xu

One of the most important requirements for a well-designed buckling restrained brace (BRB) under severe earthquake loading is to ensure its stability until the brace achieves sufficient elasto-plastic deformation. This study presents the finite element analysis results of the proposed buckling restrained brace with a longitudinally profiled steel core (LPBRB). The objective of the analyses is to conduct a performance evaluation of the proposed LPBRBs, and to perform a parameter study with different clearance, width:thickness ratio, mortar strength, and friction coefficient for investigating the local buckling behavior of the LPBRBs. Numerical analyses results demonstrate that the LPBRBs exhibited good ductile performance and stable hysteretic behavior. The local buckling failure can be predicted by the demand:capacity ratio formula. The friction coefficient has little influence on the hysteretic behavior of LPBRBs. The local stability can be improved by adopting the mortar with higher compression strength or the LP core with lower width:thickness ratio. The proposed LPBRBs have a similar hysteretic response to the conventional BRBs.


2011 ◽  
Vol 255-260 ◽  
pp. 369-373
Author(s):  
Jun Ling Chen ◽  
Xin Huang ◽  
Ren Le Ma

One large-diameter and non-circular steel tube was adopted in Henan TV tower (China). This special cross-section consists of three flat plates welded to three arc plates one by one. This paper studies the critical local buckling behavior of steel plates by using the finite element analysis method. Initial geometric imperfections and residual stresses presented in steel plates, material yielding and strain hardening were taken into account in the nonlinear analysis. An experimental study was performed to verify the capacity ability of this special steel tube. Based on the results obtained from the nonlinear finite element analyses and experiments, a set of design recommendations are provided for ensuring the safety of this special tube in Henan TV tower.


2021 ◽  
Vol 11 (13) ◽  
pp. 6094
Author(s):  
Hubdar Hussain ◽  
Xiangyu Gao ◽  
Anqi Shi

In this study, detailed finite element analysis was conducted to examine the seismic performance of square and circular hollow steel braces under axial cyclic loading. Finite element models of braces were constructed using ABAQUS finite element analysis (FEA) software and validated with experimental results from previous papers to expand the specimen’s matrix. The influences of cross-section shape, slenderness ratio, and width/diameter-to-thickness ratio on hysteretic behavior and compressive-tensile strength degradation were studied. Simulation results of parametric studies show that both square and circular hollow braces have a better cyclic performance with smaller slenderness and width/diameter-to-thickness ratios, and their compressive-tensile resistances ratio significantly decreases from cycle to cycle after the occurrence of the global buckling of braces.


2011 ◽  
Vol 374-377 ◽  
pp. 2430-2436
Author(s):  
Gang Shi ◽  
Zhao Liu ◽  
Yong Zhang ◽  
Yong Jiu Shi ◽  
Yuan Qing Wang

High strength steel sections have been increasingly used in buildings and bridges, and steel angles have also been widely used in many steel structures, especially in transmission towers and long span trusses. However, high strength steel exhibits mechanical properties that are quite different from ordinary strength steel, and hence, the local buckling behavior of steel equal angle members under axial compression varies with the steel strength. However, there is a lack of research on the relationship of the local buckling behavior of steel equal angle members under axial compression with the steel strength. A finite element model is developed in this paper to analyze the local buckling behavior of steel equal angle members under axial compression, and study its relationship with the steel strength and the width-to-thickness ratio of the angle leg. The finite element analysis (FEA) results are compared with the corresponding design method in the American code AISC 360-05, which provides a reference for the related design.


Sign in / Sign up

Export Citation Format

Share Document