Spatial imaging of monochromatic hard x‐rays from an APS undulator by the Kohzu double‐crystal monochromator (abstract)

1996 ◽  
Vol 67 (9) ◽  
pp. 3348-3348
Author(s):  
D.M. Mills ◽  
W.K. Lee ◽  
M. Keeffe ◽  
D.R. Haeffner ◽  
P. Fernandez
1998 ◽  
Vol 5 (3) ◽  
pp. 679-681 ◽  
Author(s):  
Yasuharu Kashihara ◽  
Hiroshi Yamazaki ◽  
Kenji Tamasaku ◽  
Tetsuya Ishikawa

The rotated-inclined double-crystal monochromator (RIDCM) has been adopted to reduce the heat load from third-generation undulator radiation. The position of the exit X-rays from RIDCM has been calculated as a function of X-ray energy on the basis of diffraction theory including refraction effects. The results show that the positions of the exit X-rays vary over a wide range due to asymmetric reflection. Methods of fixing the exit position in RIDCM are also discussed.


1988 ◽  
Vol 32 ◽  
pp. 141-147
Author(s):  
Shinjiro Hayakawa ◽  
Atsuo Iida ◽  
Sadao Aoki ◽  
Yohichi Gohshi

AbstractA synchrotron radiation X-ray micro analyzer(SRXMA) was developed at Photon Factory in Japan. The present SRXMA combines a double crystal monochromator and mirror optics and either a white or a monochromatic microbeam can be used. Micro X-ray fluorescence analysis was carried out, and a minimum detection limit of 1 ppm for Mn was obtained for 100 sec measurement with the white beam. With monochromatic beam excitation, micro X-ray spectroscopies are now feasible.The obtained beam size was 1.6 μ;m - 34 μm* The beam was blurred in one direction by the scattered X-rays caused by the surface irregularities of the focusing mirror. Improvements in the mirror quality will ensure a beam spot of just a few microns with sufficient intensity.


2012 ◽  
Vol 706-709 ◽  
pp. 1707-1712 ◽  
Author(s):  
J.E. Parker ◽  
J. Potter ◽  
S.P. Thompson ◽  
A.R. Lennie ◽  
C.C. Tang

Beamline I11 at Diamond began accepting users for high resolution powder diffraction experiments in Oct 2008. We present the design, key specifications, performance and the hardware of this new beamline which receives an intense and highly collimated x-ray beam generated by an in-vacuum undulator. With the simple optics (a double-crystal monochromator, harmonic rejection mirrors and slits), a high purity beam of low energy-bandpass X-rays optimised at 15 keV is delivered at the sample. The heavy duty diffraction instrument is designed to have the flexibility to house a variety of sample environments and holds two detection systems to collect high quality diffraction data, i.e. multi-analysing crystals (MAC) for high angular resolution experiments and a fast position sensitive detector (PSD) for time-resolved studies. A recent addition to the beamline capabilities is the installation of a specifically designed gas control system. This allows the in-situ dosing of a powder sample with gases such as hydrogen and carbon dioxide, at low (~10 mbar) and high pressures (<100 bar). In addition a low pressure capillary sample cell is described which is now available to users of the beamline.


1986 ◽  
Vol 47 (C8) ◽  
pp. C8-135-C8-137
Author(s):  
T. MURATA ◽  
T. MATSUKAWA ◽  
M. MORI ◽  
M. OBASHI ◽  
S.-I. NAO-E ◽  
...  

Author(s):  
Zheng Jiang ◽  
Eryan Wang ◽  
Ruiqiang Song ◽  
Siming Guo ◽  
Jinjie Wu ◽  
...  

2015 ◽  
Vol 22 (4) ◽  
pp. 879-885 ◽  
Author(s):  
Paw Kristiansen ◽  
Jan Horbach ◽  
Ralph Döhrmann ◽  
Joachim Heuer

The requirement for vibrational stability of beamline optics continues to evolve rapidly to comply with the demands created by the improved brilliance of the third-generation low-emittance storage rings around the world. The challenge is to quantify the performance of the instrument before it is installed at the beamline. In this article, measurement techniques are presented that directly and accurately measure (i) the relative vibration between the two crystals of a double-crystal monochromator (DCM) and (ii) the absolute vibration of the second-crystal cage of a DCM. Excluding a synchrotron beam, the measurements are conducted underin situconditions, connected to a liquid-nitrogen cryocooler. The investigated DCM utilizes a direct-drive (no gearing) goniometer for the Bragg rotation. The main causes of the DCM vibration are found to be the servoing of the direct-drive goniometer and the flexibility in the crystal cage motion stages. It is found that the investigated DCM can offer relative pitch vibration down to 48 nrad RMS (capacitive sensors, 0–5 kHz bandwidth) and absolute pitch vibration down to 82 nrad RMS (laser interferometer, 0–50 kHz bandwidth), with the Bragg axis brake engaged.


2000 ◽  
Vol 33 (4) ◽  
pp. 1051-1058
Author(s):  
Ioanna Matsouli ◽  
Vladimir V. Kvardakov ◽  
José Baruchel

Ultrasonic standing waves, excited in FeBO3(111) crystal plates through magneto-elastic coupling, were visualized using monochromatic Bragg diffraction imaging (topography) with synchrotron radiation. The images depend strongly on whether diffraction by the sample occurs in the same plane as in the double-crystal monochromator, or in the perpendicular plane. The observations are explained by taking into account (a) the strong spatial dispersion which prevails because of the small effective divergence (angular size of the source as seen from a point in the specimen), which is less than one microradian in this experiment, and (b) the sample vibration and curvature.


2018 ◽  
Vol 74 (6) ◽  
pp. 673-680 ◽  
Author(s):  
V. G. Kohn

The article reports an accurate theory of X-ray coplanar multiple diffraction for an experimental setup that consists of a generic synchrotron radiation (SR) source, double-crystal monochromator (M) and slit (S). It is called for brevity the theory of X-ray coplanar multiple SRMS diffractometry. The theory takes into account the properties of synchrotron radiation as well as the features of diffraction of radiation in the monochromator crystals and the slit. It is shown that the angular and energy dependence (AED) of the sample reflectivity registered by a detector has the form of a convolution of the AED in the case of the monochromatic plane wave with the instrumental function which describes the angular and energy spectrum of radiation incident on the sample crystal. It is shown that such a scheme allows one to measure the rocking curves close to the case of the monochromatic incident plane wave, but only using the high-order reflections by monochromator crystals. The case of four-beam (220)(331)({\overline {11}}1) diffraction in Si is considered in detail.


1998 ◽  
Vol 69 (3) ◽  
pp. 1230-1235 ◽  
Author(s):  
C. S. Hwang ◽  
F. Y. Lin ◽  
Chih-Hao Lee ◽  
Kuan-Li Yu ◽  
C. H. Hsieh ◽  
...  

1972 ◽  
Vol 22 (5) ◽  
pp. 427-428 ◽  
Author(s):  
J. Hrdý ◽  
E. Krouský
Keyword(s):  
X Rays ◽  

Sign in / Sign up

Export Citation Format

Share Document