Nitrogen laser system for diagnosing z-pinch and x-pinch plasmas

1997 ◽  
Vol 68 (7) ◽  
pp. 2725-2729 ◽  
Author(s):  
Daniel H. Kalantar ◽  
David A. Hammer ◽  
Alan W. De Silva
Keyword(s):  
2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Mohamed Otman Twati ◽  
Abubaker B. Otman

In this paper, a modified approach for output power calculations of the nitrogen laser system is reported. The power calculations is based on the distributed parameter model of the Blumlein-line circuit along with the decoupling approach of the laser rate equation from the electrical circuit equations. The general laser power assumption is considered in calculating the output optical power. The effect of the laser gap inductance on both the electrical and optical power waveforms is simulated and discussed. The theoretical work presented here is quite general and could be applied to many other fast discharges laser systems, such as CO2 and copper vapor lasers.


1981 ◽  
Vol 52 (10) ◽  
pp. 1579-1580 ◽  
Author(s):  
D. M. Rayner ◽  
P. A. Hackett ◽  
C. Willis

2009 ◽  
Vol 27 (4) ◽  
pp. 709-717 ◽  
Author(s):  
C. Stehlé ◽  
A. Ciardi ◽  
J.-P. Colombier ◽  
M. González ◽  
T. Lanz ◽  
...  

AbstractAdvances in laser and Z-pinch technology, coupled with the development of plasma diagnostics, and the availability of high-performance computers, have recently stimulated the growth of high-energy density laboratory astrophysics. In particular, a number of experiments have been designed to study radiative shocks and jets with the aim of shedding new light on physical processes linked to the ejection and accretion of mass by newly born stars. Although general scaling laws are powerful tools to link laboratory experiments with astrophysical plasmas, the phenomena modeled are often too complicated for simple scaling to remain relevant. Nevertheless, the experiments can still give important insights into the physics of astrophysical systems and can be used to provide the basic experimental validation of numerical simulations in regimes of interest to astrophysics. We will illustrate the possible links between laboratory experiments, numerical simulations, and astrophysics in the context of stellar jets. First we will discuss the propagation of stellar jets in a cross-moving interstellar medium and the scaling to Z-pinch produced jets. Our second example focuses on slab-jets produced at the Prague Asterix Laser System laser installation and their practical applications to astrophysics. Finally, we illustrate the limitations of scaling for radiative shocks, which are found at the head of the most rapid stellar jets.


2018 ◽  
Vol 16 (36) ◽  
pp. 94-103
Author(s):  
Saif B. Mohammed

In this research constructed N2 laser system by use developed method of electric discharge. In this method used four step of electric discharge by using four capacitors, three spark gaps, high tension power supply varying in range from 12kV to 24 kV and three resistors, this method called three stage blumlein circuit. The breakdown time delay of these parallel spark gaps cement strong ultraviolet preionization in the laser channel, thus the result of these amendments the laser output is many doubled and is more increasing than that obtained using the one and two stage blumlein circuits. This system has been designed and operated to give pulse laser with wavelength at 337.1 nm. This laser system can operate without mirrors and optical resonator. The best result of energy was about (20.2 mJ) at electrode separation (3.5 mm) with flow rate (13 L/min) and applied voltage (24 kV). With this conditions of electric discharges the pulse duration was (6.65 ns) then the peak power was (3.04 MW), the efficiency of convert the electric energy to optical energy was (0. 93%) and The divergence of laser beam at optimal condition was (0.348 mrad). The results of fabricated system indicate the output characteristics can be significantly improved by improving the discharge characteristics.


1982 ◽  
Vol 41 (1) ◽  
pp. 59-60 ◽  
Author(s):  
I. Sánta ◽  
S. Szatmári ◽  
B. Német ◽  
J. Hebling
Keyword(s):  

1986 ◽  
Vol 44 (3) ◽  
pp. 312-313
Author(s):  
Yu. V. Zvinevich ◽  
I. N. Kazimirchik ◽  
N. A. Nemkovich ◽  
A. N. Rubinov ◽  
V. I. Tomin

Author(s):  
Jason R. Heffelfinger ◽  
C. Barry Carter

Yttria-stabilized zirconia (YSZ) is currently used in a variety of applications including oxygen sensors, fuel cells, coatings for semiconductor lasers, and buffer layers for high-temperature superconducting films. Thin films of YSZ have been grown by metal-organic chemical vapor deposition, electrochemical vapor deposition, pulse-laser deposition (PLD), electron-beam evaporation, and sputtering. In this investigation, PLD was used to grow thin films of YSZ on (100) MgO substrates. This system proves to be an interesting example of relationships between interfaces and extrinsic dislocations in thin films of YSZ.In this experiment, a freshly cleaved (100) MgO substrate surface was prepared for deposition by cleaving a lmm-thick slice from a single-crystal MgO cube. The YSZ target material which contained 10mol% yttria was prepared from powders and sintered to 85% of theoretical density. The laser system used for the depositions was a Lambda Physik 210i excimer laser operating with KrF (λ=248nm, 1Hz repetition rate, average energy per pulse of 100mJ).


Sign in / Sign up

Export Citation Format

Share Document