Two-phase flow analysis of unstable fluid mixing in one-dimensional geometry

2000 ◽  
Vol 12 (10) ◽  
pp. 2461 ◽  
Author(s):  
David Saltz ◽  
Wonsuck Lee ◽  
Tien-Ruey Hsiang
2015 ◽  
Vol 25 (9) ◽  
pp. 795-817 ◽  
Author(s):  
Mika P. Jarvinen ◽  
A. E. P. Kankkunen ◽  
R. Virtanen ◽  
P. H. Miikkulainen ◽  
V. P. Heikkila

Author(s):  
Ikpe E. Aniekan ◽  
Owunna Ikechukwu ◽  
Satope Paul

Four different riser pipe exit configurations were modelled and the flow across them analysed using STAR CCM+ CFD codes. The analysis was limited to exit configurations because of the length to diameter ratio of riser pipes and the limitations of CFD codes available. Two phase flow analysis of the flow through each of the exit configurations was attempted. The various parameters required for detailed study of the flow were computed. The maximum velocity within the pipe in a two phase flow were determined to 3.42 m/s for an 8 (eight) inch riser pipe. After thorough analysis of the two phase flow regime in each of the individual exit configurations, the third and the fourth exit configurations were seen to have flow properties that ensures easy flow within the production system as well as ensure lower computational cost. Convergence (Iterations), total pressure, static pressure, velocity and pressure drop were used as criteria matrix for selecting ideal riser exit geometry, and the third exit geometry was adjudged the ideal exit geometry of all the geometries. The flow in the third riser exit configuration was modelled as a two phase flow. From the results of the two phase flow analysis, it was concluded that the third riser configuration be used in industrial applications to ensure free flow of crude oil and gas from the oil well during oil production.


Author(s):  
Takashi Hibiki

The article “One-dimensional drift-flux correlations for two-phase flow in medium-size channels” written by Takashi Hibiki, was originally published electronically on the publisher’s internet portal (currently SpringerLink) on 17 April 2019 without open access. After publication in Volume 1, Issue 2, page 85–100, the author(s) decided to opt for Open Choice and to make the article an open access publication. Therefore, the copyright of the article has been changed to © The Author(s) 2020 and the article is forthwith distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.


Author(s):  
David Heinze ◽  
Thomas Schulenberg ◽  
Lars Behnke

A simulation model for the direct contact condensation of steam in subcooled water is presented that allows determination of major parameters of the process, such as the jet penetration length. Entrainment of water by the steam jet is modeled based on the Kelvin–Helmholtz and Rayleigh–Taylor instability theories. Primary atomization due to acceleration of interfacial waves and secondary atomization due to aerodynamic forces account for the initial size of entrained droplets. The resulting steam-water two-phase flow is simulated based on a one-dimensional two-fluid model. An interfacial area transport equation is used to track changes of the interfacial area density due to droplet entrainment and steam condensation. Interfacial heat and mass transfer rates during condensation are calculated using the two-resistance model. The resulting two-phase flow equations constitute a system of ordinary differential equations, which is solved by means of the explicit Runge–Kutta–Fehlberg algorithm. The simulation results are in good qualitative agreement with published experimental data over a wide range of pool temperatures and mass flow rates.


2013 ◽  
Vol 51 (3) ◽  
pp. 293-305 ◽  
Author(s):  
Julien Chauchat ◽  
Sylvain Guillou ◽  
Damien Pham Van Bang ◽  
Kim Dan Nguyen

2018 ◽  
Vol 72 ◽  
pp. 257-273 ◽  
Author(s):  
Hang Liu ◽  
Liang-ming Pan ◽  
Takashi Hibiki ◽  
Wen-xiong Zhou ◽  
Quan-yao Ren ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document