scholarly journals Mechanical characterization of low-K dielectric materials

Author(s):  
Thomas M. Moore
2004 ◽  
Vol 75 (1) ◽  
pp. 103-110 ◽  
Author(s):  
R.J Nay ◽  
O.L Warren ◽  
D Yang ◽  
T.J Wyrobek

2005 ◽  
Vol 82 (3-4) ◽  
pp. 368-373 ◽  
Author(s):  
N. Chérault ◽  
G. Carlotti ◽  
N. Casanova ◽  
P. Gergaud ◽  
C. Goldberg ◽  
...  

1999 ◽  
Vol 565 ◽  
Author(s):  
Chuan Hu ◽  
Michael Morgen ◽  
Paul S. Ho ◽  
Anurag Jain ◽  
William. N. Gill ◽  
...  

AbstractA quantitative characterization of the thermal properties is required to assess the thermal performance of low dielectric constant materials. Recently we have developed a technique based on the 3-omega method for measuring the thermal conductivity of porous dielectric thin films. In this paper we present the results on the measurements of thermal conductivity of thin porous films using this method. A finite element method analysis is used to evaluate the approximations used in the measurement. Two porosity-weighted thermal resistor models are proposed to interpret the results. By studying the dependence of the thermal conductivity on porosity, we are able to discuss the scaling rule of thermal conductivity. Additionally, a steady state layered heater model is used for evaluating the significance of introducing porous ILDs into an interconnect structure.


Author(s):  
Tingge Xu ◽  
Yingjie Du ◽  
Hongbing Lu ◽  
Xiao Hu Liu ◽  
Thomas M. Shaw ◽  
...  

2006 ◽  
Vol 914 ◽  
Author(s):  
Patrick Hoffmann ◽  
Dieter Schmeisser ◽  
Hans-Juergen Engelmann ◽  
Ehrenfried Zschech ◽  
Heiko Stegmann ◽  
...  

AbstractThe use of low dielectric constant materials in the on-chip interconnect process reduces interconnect delay, power dissipation and crosstalk noise. To achieve the requirements of the ITRS for 2007-2009 minimal sidewall damage from etch, ash or cleans is required. In chemical vapor deposited (CVD) organo-silicate glass (OSG) which are used as intermetal dielectric (IMD) materials the substitution of oxygen in SiO2 by methyl groups (-CH3) reduces the permit-tivity significantly (from 4.0 in SiO2 to 2.6-3.3 in the OSG), since the electronic polarizability is lower for Si-C bonds than for Si-O bonds.However, plasma processing for resist stripping, trench etching and post-etch cleaning removes C and H containing molecular groups from the near-surface layer of OSG. Therefore, compositional analysis and chemical bonding characterization of structured IMD films with nanometer resolution is necessary for process optimization.OSG thin films as-deposited and after plasma treatment are studied using X-ray absorp-tion spectroscopy (XAS) and electron energy loss spectroscopy (EELS). In both techniques, the fine structure near the C1s absorption or energy loss edge, respectively, allows to identify C-H, C-C, and C-O bonds. This gives the opportunity to differentiate between individual low-k mate-rials and their modifications. The O1s signal is less selective to individual bonds. XAS spectra have been recorded for non-patterned films and EELS spectra for patterned structures. The chemical bonding is compared for as-deposited and plasma-treated low-k materials. The Fluo-rescence Yield (FY) and the Total Electron Yield (TEY) recorded while XAS measurement are compared. Examination of the C 1s near-edge structures reveal a modified bonding of the re-maining C atoms in the plasma-treated sample regions.


2015 ◽  
Vol 21 (S3) ◽  
pp. 2075-2076
Author(s):  
Wayne W. Zhao ◽  
Michael Gribelyuk ◽  
Jeremy D. Russell

Sign in / Sign up

Export Citation Format

Share Document