scholarly journals Minimize Electron Beam Damage during Characterization of Carbon-Depletion in Ultra Low-K Dielectric Materials by STEM EELS Elemental Mapping

2016 ◽  
Vol 22 (S3) ◽  
pp. 334-335 ◽  
Author(s):  
Wayne W. Zhao ◽  
Michael Gribelyuk
2015 ◽  
Vol 21 (S3) ◽  
pp. 2075-2076
Author(s):  
Wayne W. Zhao ◽  
Michael Gribelyuk ◽  
Jeremy D. Russell

1999 ◽  
Vol 565 ◽  
Author(s):  
Chuan Hu ◽  
Michael Morgen ◽  
Paul S. Ho ◽  
Anurag Jain ◽  
William. N. Gill ◽  
...  

AbstractA quantitative characterization of the thermal properties is required to assess the thermal performance of low dielectric constant materials. Recently we have developed a technique based on the 3-omega method for measuring the thermal conductivity of porous dielectric thin films. In this paper we present the results on the measurements of thermal conductivity of thin porous films using this method. A finite element method analysis is used to evaluate the approximations used in the measurement. Two porosity-weighted thermal resistor models are proposed to interpret the results. By studying the dependence of the thermal conductivity on porosity, we are able to discuss the scaling rule of thermal conductivity. Additionally, a steady state layered heater model is used for evaluating the significance of introducing porous ILDs into an interconnect structure.


2006 ◽  
Vol 914 ◽  
Author(s):  
Patrick Hoffmann ◽  
Dieter Schmeisser ◽  
Hans-Juergen Engelmann ◽  
Ehrenfried Zschech ◽  
Heiko Stegmann ◽  
...  

AbstractThe use of low dielectric constant materials in the on-chip interconnect process reduces interconnect delay, power dissipation and crosstalk noise. To achieve the requirements of the ITRS for 2007-2009 minimal sidewall damage from etch, ash or cleans is required. In chemical vapor deposited (CVD) organo-silicate glass (OSG) which are used as intermetal dielectric (IMD) materials the substitution of oxygen in SiO2 by methyl groups (-CH3) reduces the permit-tivity significantly (from 4.0 in SiO2 to 2.6-3.3 in the OSG), since the electronic polarizability is lower for Si-C bonds than for Si-O bonds.However, plasma processing for resist stripping, trench etching and post-etch cleaning removes C and H containing molecular groups from the near-surface layer of OSG. Therefore, compositional analysis and chemical bonding characterization of structured IMD films with nanometer resolution is necessary for process optimization.OSG thin films as-deposited and after plasma treatment are studied using X-ray absorp-tion spectroscopy (XAS) and electron energy loss spectroscopy (EELS). In both techniques, the fine structure near the C1s absorption or energy loss edge, respectively, allows to identify C-H, C-C, and C-O bonds. This gives the opportunity to differentiate between individual low-k mate-rials and their modifications. The O1s signal is less selective to individual bonds. XAS spectra have been recorded for non-patterned films and EELS spectra for patterned structures. The chemical bonding is compared for as-deposited and plasma-treated low-k materials. The Fluo-rescence Yield (FY) and the Total Electron Yield (TEY) recorded while XAS measurement are compared. Examination of the C 1s near-edge structures reveal a modified bonding of the re-maining C atoms in the plasma-treated sample regions.


Author(s):  
J. Demarest ◽  
D. Bearup ◽  
A. Dalton ◽  
L. Hahn ◽  
B. Redder ◽  
...  

Abstract The continually shrinking dimensions of today’s semiconductor technology occasionally allow for novel approaches in imaging defects. It has become desirable to image subsurface voids prior to cross sectioning and some efforts have been made to address this need including the construction of specialized instrumentation [1]. The thickness of the metallization levels at the 65 nm technology node and smaller now allow for the use of the electron beam in a scanning electron microscope (SEM) as a material sensor. At high accelerating voltages (between 20-30 kV) in backscatter imaging mode the numerical gray level values at each pixel location can correlate to the amount of material directly under the electron beam at that location. This is particularly evident when dealing with defined geometries and material sets offering high contrast changes between materials such as those found in semiconductor technology like copper (Cu) metal and conventional dielectric materials. As a result, subsurface voids can be mapped to a reasonable representation prior to cross sectioning and precise pinpointing of the defect location in test structures can occur. This paper discusses this methodology on 65 nm technology with Cu metal lines in a low-k dielectric material for a two level metal test structure. To some extent this work represents a natural extension of a paper presented previously by the author [2].


2004 ◽  
Vol 75 (1) ◽  
pp. 103-110 ◽  
Author(s):  
R.J Nay ◽  
O.L Warren ◽  
D Yang ◽  
T.J Wyrobek

2018 ◽  
Vol 36 (1) ◽  
pp. 51-55
Author(s):  
Lazhar Leghrib ◽  
Abdelkader Nouiri

Abstract During the characterization by electron beam techniques including scanning electron microscope (SEM) and cathodoluminescence at low dimensions, some undesirable phenomena (unwanted effects) can be created, like the thermal effects (or electron beam damage), and these effects can damage the sample. This limits the information one can get from a sample or reduces image spatial resolution. In order to understand these effects, significant efforts have been made but these studies focused on the thermal properties, without a detailed study of the causes of nanoscale heating in the bulk of samples during the SEM-characterization. Additionally, it is very difficult to measure experimentally the heating because there are many variables that can affect the results, such as the current beam, accelerating energy, thermal conductivity and size of samples. Taking into account all the factors and in order to determine the local temperature rise during the electron beam characterization of AlGaN at low dimensions, we have used a hybrid model based on combined molecular dynamics and Monte Carlo calculation of inelastic interaction of electrons with matter to calculate the temperature elevation during the SEM-characterization which can be taken into account during the characterization of AlGaN at low dimension by electron beam techniques.


Sign in / Sign up

Export Citation Format

Share Document