scholarly journals Mighty MURINEs: Neutrino physics at very high energy muon colliders

2000 ◽  
Author(s):  
Bruce J. King
2019 ◽  
Vol 10 (01) ◽  
pp. 189-214 ◽  
Author(s):  
Manuela Boscolo ◽  
Jean-Pierre Delahaye ◽  
Mark Palmer

The potential of muon beams for high energy physics applications is described along with the challenges of producing high quality muon beams. Two proposed approaches for delivering high intensity muon beams, a proton driver source and a positron driver source, are described and compared. The proton driver concepts are based on the studies from the Muon Accelerator Program (MAP). The MAP effort focused on a path to deliver muon-based facilities, ranging from neutrino factories to muon colliders, that could span research needs at both the intensity and energy frontiers. The Low EMittance Muon Accelerator (LEMMA) concept, which uses a positron-driven source, provides an attractive path to very high energy lepton colliders with improved particle backgrounds. The recent study of a 14-TeV muon collider in the LHC tunnel, which could leverage the existing CERN injectors and infrastructure and provide physics reach comparable to the 100[Formula: see text]TeV FCC-hh, at lower cost and with cleaner physics conditions, is also discussed. The present status of the design and R&D efforts towards each of these sources is described. A summary of important R&D required to establish a facility path for each concept is also presented.


2010 ◽  
Vol 25 (18n19) ◽  
pp. 3733-3740 ◽  
Author(s):  
S. I. SINEGOVSKY ◽  
A. A. KOCHANOV ◽  
T. S. SINEGOVSKAYA ◽  
A. MISAKI ◽  
N. TAKAHASHI

In the near future, the energy region above few hundreds of TeV may really be accessible for measurements of the atmospheric muon spectrum with IceCube array. Therefore, one expects that muon flux uncertainties above 50 TeV, related to a poor knowledge of charm production cross-sections and insufficiently examined primary spectra and composition, will be diminished. We give predictions for the very high-energy muon spectrum at sea level, obtained with the three hadronic interaction models, taking into account also the muon contribution due to decays of the charmed hadrons.


1964 ◽  
Vol 82 (1) ◽  
pp. 3-81 ◽  
Author(s):  
Evgenii L. Feinberg ◽  
Dmitrii S. Chernavskii

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
L. Whitmore ◽  
R. I. Mackay ◽  
M. van Herk ◽  
J. K. Jones ◽  
R. M. Jones

AbstractThis paper presents the first demonstration of deeply penetrating dose delivery using focused very high energy electron (VHEE) beams using quadrupole magnets in Monte Carlo simulations. We show that the focal point is readily modified by linearly changing the quadrupole magnet strength only. We also present a weighted sum of focused electron beams to form a spread-out electron peak (SOEP) over a target region. This has a significantly reduced entrance dose compared to a proton-based spread-out Bragg peak (SOBP). Very high energy electron (VHEE) beams are an exciting prospect in external beam radiotherapy. VHEEs are less sensitive to inhomogeneities than proton and photon beams, have a deep dose reach and could potentially be used to deliver FLASH radiotherapy. The dose distributions of unfocused VHEE produce high entrance and exit doses compared to other radiotherapy modalities unless focusing is employed, and in this case the entrance dose is considerably improved over existing radiations. We have investigated both symmetric and asymmetric focusing as well as focusing with a range of beam energies.


2021 ◽  
Vol 103 (7) ◽  
Author(s):  
Tao Han ◽  
Zhen Liu ◽  
Lian-Tao Wang ◽  
Xing Wang

1981 ◽  
Vol 8 (3) ◽  
pp. 205-213 ◽  
Author(s):  
Kisei Kinoshita ◽  
Akira Minaka ◽  
Hiroyuki Sumiyoshi

2013 ◽  
Vol 777 (1) ◽  
pp. L18 ◽  
Author(s):  
Y. T. Tanaka ◽  
C. C. Cheung ◽  
Y. Inoue ◽  
Ł. Stawarz ◽  
M. Ajello ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document