The Fedosov class of the Wick type star-product

2001 ◽  
Author(s):  
V. A. Dolgushev
Keyword(s):  
2019 ◽  
Vol 31 (5) ◽  
pp. 1203-1223
Author(s):  
Chiara Esposito ◽  
Philipp Schmitt ◽  
Stefan Waldmann

AbstractIn this paper, we discuss continuity properties of the Wick-type star product on the 2-sphere, interpreted as a coadjoint orbit. Star products on coadjoint orbits in general have been constructed by different techniques. We compare the constructions of Alekseev–Lachowska and Karabegov, and we prove that they agree in general. In the case of the 2-sphere, we establish the continuity of the star product, thereby allowing for a completion to a Fréchet algebra.


2008 ◽  
Vol 05 (04) ◽  
pp. 547-556
Author(s):  
S. A. POL'SHIN

In certain neighborhood U of an arbitrary point of a symplectic manifold M we construct a Fedosov-type star-product *L such that for an arbitrary leaf ℘ of a given polarization [Formula: see text] the vanishing ideal of ℘ ∩ U in the commutative algebra C∞(U)[[h]] is a left ideal in the deformed algebra (C∞(U)[[h]],*L). With certain additional assumptions on M, *L becomes a so-called star-product with separation of variables.


1979 ◽  
Vol 46 ◽  
pp. 125-149 ◽  
Author(s):  
David A. Allen

No paper of this nature should begin without a definition of symbiotic stars. It was Paul Merrill who, borrowing on his botanical background, coined the termsymbioticto describe apparently single stellar systems which combine the TiO absorption of M giants (temperature regime ≲ 3500 K) with He II emission (temperature regime ≳ 100,000 K). He and Milton Humason had in 1932 first drawn attention to three such stars: AX Per, CI Cyg and RW Hya. At the conclusion of the Mount Wilson Ha emission survey nearly a dozen had been identified, and Z And had become their type star. The numbers slowly grew, as much because the definition widened to include lower-excitation specimens as because new examples of the original type were found. In 1970 Wackerling listed 30; this was the last compendium of symbiotic stars published.


Author(s):  
Ataru Tanikawa ◽  
Tomoya Kinugawa ◽  
Jun Kumamoto ◽  
Michiko S Fujii

Abstract We estimate formation rates of LB-1-like systems through dynamical interactions in the framework of the theory of stellar evolution before the discovery of the LB-1 system. The LB-1 system contains a ∼70 ${M_{\odot}}$ black hole (BH), a so-called pair instability (PI) gap BH, and a B-type star with solar metallicity, and has nearly zero eccentricity. The most efficient formation mechanism is as follows. In an open cluster, a naked helium star (with ∼20 ${M_{\odot}}$) collides with a heavy main sequence star (with ∼50 ${M_{\odot}}$) which has a B-type companion. The collision results in a binary consisting of the collision product and the B-type star with a high eccentricity. The binary can be circularized through the dynamical tide with radiative damping of the collision product envelope. Finally, the collision product collapses to a PI-gap BH, avoiding pulsational pair instability and pair instability supernovae because its He core is as massive as the pre-colliding naked He star. We find that the number of LB-1-like systems in the Milky Way galaxy is ∼0.01(ρoc/104 ${M_{\odot}}$ pc−3), where ρoc is the initial mass densities of open clusters. If we take into account LB-1-like systems with O-type companion stars, the number increases to ∼0.03(ρoc/104 ${M_{\odot}}$ pc−3). This mechanism can form LB-1-like systems at least ten times more efficiently than the other mechanisms: captures of B-type stars by PI-gap BHs, stellar collisions between other types of stars, and stellar mergers in hierarchical triple systems. We conclude that no dynamical mechanism can explain the presence of the LB-1 system.


Author(s):  
Peter Adam ◽  
Vladimir A. Andreev ◽  
Margarita A. Man’ko ◽  
Vladimir I. Man’ko ◽  
Matyas Mechler
Keyword(s):  

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Rodolfo Panerai ◽  
Antonio Pittelli ◽  
Konstantina Polydorou

Abstract We find a one-dimensional protected subsector of $$ \mathcal{N} $$ N = 4 matter theories on a general class of three-dimensional manifolds. By means of equivariant localization we identify a dual quantum mechanics computing BPS correlators of the original model in three dimensions. Specifically, applying the Atiyah-Bott-Berline-Vergne formula to the original action demonstrates that this localizes on a one-dimensional action with support on the fixed-point submanifold of suitable isometries. We first show that our approach reproduces previous results obtained on S3. Then, we apply it to the novel case of S2× S1 and show that the theory localizes on two noninteracting quantum mechanics with disjoint support. We prove that the BPS operators of such models are naturally associated with a noncom- mutative star product, while their correlation functions are essentially topological. Finally, we couple the three-dimensional theory to general $$ \mathcal{N} $$ N = (2, 2) surface defects and extend the localization computation to capture the full partition function and BPS correlators of the mixed-dimensional system.


2011 ◽  
Vol 20 (1) ◽  
Author(s):  
G. Barisevišius ◽  
G. Tautvaišienė ◽  
S. Berdyugina ◽  
Y. Chorniy ◽  
I. Ilyin

AbstractAbundances of 22 chemical elements, including the key elements and isotopes such as


Astrophysics ◽  
2021 ◽  
Author(s):  
E. S. Dmitrienko ◽  
I. S. Savanov ◽  
V. B. Puzin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document