Circuit for continuous motional series resonant frequency and motional resistance monitoring of quartz crystal resonators by parallel capacitance compensation

2002 ◽  
Vol 73 (7) ◽  
pp. 2724-2737 ◽  
Author(s):  
A. Arnau ◽  
T. Sogorb ◽  
Y. Jiménez
Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 892
Author(s):  
Jicong Zhao ◽  
Zheng Zhu ◽  
Haiyan Sun ◽  
Shitao Lv ◽  
Xingyu Wang ◽  
...  

This paper presents a micro-electro-mechanical systems (MEMS) processing technology for Aluminum Nitride (AlN) Lamb-wave resonators (LWRs). Two LWRs with different frequencies of 402.1 MHz and 2.097 GHz by varying the top interdigitated (IDT) periods were designed and fabricated. To avoid the shortcomings of the uncontrollable etching of inactive areas during the releasing process and to improve the fabrication yield, a thermal oxide layer was employed below the platted polysilicon sacrificial layer, which could define the miniaturized release cavities well. In addition, the bottom Mo electrode that was manufactured had a gentle inclination angle, which could contribute to the growth of the high-quality AlN piezoelectric layer above the Mo layer and effectively prevent the device from breaking. The measured results show that the IDT-floating resonators with 12 μm and 2 μm electrode periods exhibit a motional quality factor (Qm) as high as 4382 and 1633. The series resonant frequency (fs)·Qm values can reach as high as 1.76 × 1012 and 3.42 × 1012, respectively. Furthermore, Al is more suitable as the top IDT material of the AlN LWRs than Au, and can contribute to achieving an excellent electrical performances due to the smaller density, smaller thermo-elastic damping (TED), and larger acoustic impedance difference between Al and AlN.


Sign in / Sign up

Export Citation Format

Share Document