Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals

2002 ◽  
Vol 81 (7) ◽  
pp. 1163-1165 ◽  
Author(s):  
Min Qiu
Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 210
Author(s):  
Da Teng ◽  
Kai Wang

The waveguiding of terahertz surface plasmons by a GaAs strip-loaded graphene waveguide is investigated based on the effective-index method and the finite element method. Modal properties of the effective mode index, modal loss, and cut-off characteristics of higher order modes are investigated. By modulating the Fermi level, the modal properties of the fundamental mode could be adjusted. The accuracy of the effective-index method is verified by a comparison between the analytical results and numerical simulations. Besides the modal properties, the crosstalk between the adjacent waveguides, which determines the device integration density, is studied. The findings show that the effective-index method is highly valid for analyzing dielectric-loaded graphene plasmon waveguides in the terahertz region and may have potential applications in subwavelength tunable integrated photonic devices.


2004 ◽  
Vol 18 (25) ◽  
pp. 1275-1291 ◽  
Author(s):  
EKMEL OZBAY ◽  
KAAN GUVEN ◽  
ERTUGRUL CUBUKCU ◽  
KORAY AYDIN ◽  
B. KAMIL ALICI

In this article, we present an experimental and numerical study of novel optical properties of two-dimensional dielectric photonic crystals (PCs) which exhibit negative refraction. We investigate two mechanisms which utilize the band structure of the PC to generate a negative effective index of refraction (n eff <0) and demonstrate the negative refraction experimentally. To the isotropic extend of n eff , different PC slab structures are employed to focus the radiation of a point source. It is shown experimentally that the PC can generate an image of the source with subwavelength resolution in the vicinity of the PC interface. Using a different PC, one can also obtain a far field focusing. In the latter case, we explicitly show the flat lens behavior of the structure. These examples indicate that PC-based lenses can surpass limitations of conventional lenses and lead to novel optics applications.


Sign in / Sign up

Export Citation Format

Share Document