Arbitrary‐Spin Wave Equations and Lorentz Invariance

1971 ◽  
Vol 12 (5) ◽  
pp. 835-840 ◽  
Author(s):  
M. Seetharaman ◽  
J. Jayaraman ◽  
P. M. Mathews
1993 ◽  
Vol 02 (02) ◽  
pp. 397-422 ◽  
Author(s):  
D.V. AHLUWALIA ◽  
D.J. ERNST

A pragmatic approach to constructing a covariant phenomenology of the interactions of composite high-spin hadrons is proposed. Because there are no known wave equations without significant problems, we propose to construct the phenomenology without explicit reference to a wave equation. This is done by constructing the individual pieces of a perturbation theory and then utilizing the perturbation theory as the definition of the phenomenology. The covariant spinors for a particle of spin j are constructed directly from Lorentz invariance and the basic precepts of quantum mechanics following the logic put forth originally by Wigner and developed by Weinberg. Explicit expressions for the spinors are derived for j=1, 3/2 and 2. Field operators are constructed from the spinors and the free-particle propagator is derived from the vacuum expectation value of the time-order product of the field operators. A few simple examples of model interactions are given. This provides all the necessary ingredients to treat at a phenomenological level and in a covariant manner particles of arbitrary spin.


2020 ◽  
Vol 35 (20) ◽  
pp. 2050168
Author(s):  
Xia Tan ◽  
Yuzhen Liu ◽  
Zhie Liu ◽  
Bei Sha ◽  
Jie Zhang ◽  
...  

According to the Lorentz Invariance Violation originated from the quantum gravitational theory and the string theory, the Rarita-Schwinger equation of arbitrary spin fermions are exactly modified in the high energy case. Then we restudy the dynamic equation of fermions with arbitrary spin in charged Kerr-Newman-Kasuya (KNK) black hole space-time. Moreover, the tunneling radiation characteristics of fermions are studied according to the modified dynamic equation. Therefore, some new expressions for physical quantities such as tunneling rate, surface gravitation, Hawking temperature and entropy of the black hole are corrected. As a result, we calculate that the surface gravitation at the event horizon of the KNK black hole is a constant, and find that the Hawking temperature will increase, but the entropy will decrease with the increasing of correction parameter.


1992 ◽  
Vol 07 (22) ◽  
pp. 1967-1974 ◽  
Author(s):  
D.V. AHLUWALIA ◽  
D.J. ERNST

Weinberg’s equations for massless free particles of arbitrary spin are found to have acausal solutions. On the other hand, the m→0 limit of Joos-Weinberg’s finite-mass wave equations satisfied by (j, 0)⊕(0, j) j) covariant spinors are free from all kinematic acausality. This paradoxical situation is resolved and corrected by carefully studying the transition from the classical group theoretical arguments to quantum mechanically interpreted equations.


1991 ◽  
Vol 06 (18) ◽  
pp. 3119-3149 ◽  
Author(s):  
C.R. HAGEN

The problem of the proper inclusion of spin in Aharonov—Bohm scattering is considered. It is proposed that this should be accomplished by imposing the requirement that all singularities arising from the presence of spin in the associated wave equations be interpreted as limits of physically realizable flux distributions. This leads to results which confirm the usual cross section in the spinless case but imply nontrivial modifications for the scattering of a polarized spin one-half beam. By applying the technique to a calculation of the virial coefficient for a collection of flux carrying spin one-half particles, some severe obstacles to conventional views of the flux as a parameter which interpolates between bosonic and fermionic statistics are shown to occur. Although similar results for the scattering of arbitrary spin particles obtain in the Galilean limit, it is found that when spin one is considered in the context of a relativistic wave equation the singularity structure is too pathological to yield a consistent interpretation. The exact equivalence of the spin one-half Aharonov-Bohm effect to the Aharonov-Casher effect is also demonstrated and corresponding results for polarized beams are presented. Finally, it is shown that the Aharonov-Bohm effect for arbitrary spin in the Galilean limit is the exact solution in the two-particle sector of a Galilean covariant field theory.


Sign in / Sign up

Export Citation Format

Share Document