Determination of the Rate Constants of the Intersystem Crossing Processes to the Individual Zero‐Field Levels of the Lowest Triplet State

1969 ◽  
Vol 50 (7) ◽  
pp. 3113-3114 ◽  
Author(s):  
M. A. El‐Sayed ◽  
L. Hall
1978 ◽  
Vol 33 (1) ◽  
pp. 83-93 ◽  
Author(s):  
W. Hagele ◽  
D. Schmid ◽  
H. C. Wolf

The triplet state zero-field splittings and the rate constants for the population and depopulation of the triplet spin sublevels have been investigated for chlorophyll a and chlorophyll b in polymethylmethacrylate (PMMA) and methyltetrahydrofurane (MTHF) as a function of the concentration. In PMMA both chlorophyll a and chlorophyll b yielded only one ESR spectrum in the entire range of concentration which could be covered (1.5 × 10-5 - 1 × 10-3 mole/1). In MTHF the results were more complicated. At low concentrations (up to 103 mole/1) only one spectrum was observed, at higher concentrations additional spectra were detectable (all together two for chlorophyll a and five for chlorophyll b at 10-1 mole/1). The assignment of these spectra was facilitated by observing the "triplet resonance-field identity" which connects the resonancefield strengths for the canonical orientations of one particular species. Furthermore, the rate constants for some of these species could be determined.


Optically detected zero-field resonance has been used to characterize the intrinsic and deep trap 3 nπ * states in single crystals of 2-benzoylpyridine at 4.2 K. The dynamic properties of these states were studied by means of time-resolved modulated phosphorescence (t. r. m. p.) and estimates for the rate constants for depopulation and spin-lattice relaxation of the magnetic sub-levels obtained by computer simulation. For all species, depopulation from ז z dominates, having rates of order 100 s -1 , but the ז x and ז y sub-states have substantial radiative activity. The orientations of the fine-structure tensors of the magnetic species were determined from high-field e. p. r. spectra. Assuming that z is parallel to C = O, excitation causes the C = O direction to change by 8 ± 2° for the intrinsic species and by an in-significant amount for the deep trap. These spectra also demonstrated that the intrinsic triplet state is mobile. This species is believed to be a polaron with slow intersite hopping rate. A maximum energy transfer rate of 10 4 -10 5 s -1 was found for transfer between translationally inequivalent sites symmetry-related by twofold rotation about the crystal b -axis. Rate estimates for transfer to the other two translationally inequivalent sites established the two dimensional nature of the polaron. The sign and shape of the zero-field resonances for the intrinsic species were found to depend on whether excitation was through S 1 or T 1 . From the parameters required to simulate the corresponding t. r. m. p. signals it is inferred that the changes are largely due to differences in the rate constants for non-radiative decay. The deep trap was shown to have an orientation and magnetic properties similar to those of the intrinsic species, and is believed to be a physical defect. It has radiative activity from the ז x sub-level which is significantly less than for the intrinsic species. Spin-lattice relaxation is fast for the mobile intrinsic species ( ca . 10 4 s -1 ) compared with the deep trap rate ( ca . 50 4 s -1 ). For the intrinsic species a field dependence for spin-lattice relaxation is apparent.


2003 ◽  
Vol 68 (2) ◽  
pp. 77-84 ◽  
Author(s):  
Vladimir Leskovac ◽  
Svetlana Trivic ◽  
Draginja Pericin

In this work, all the rate constants in the kinetic mechanism of the yeast alcohol dehydrogenase-catalyzed oxidation of ethanol by NAD+, at pH 7.0, 25 ?C, have been estimated. The determination of the individual rate constants was achieved by fitting the reaction progress curves to the experimental data, using the procedures of the FITSIM and KINSIM software package of Carl Frieden. This work is the first report in the literature showing the internal equilibrium constants for the isomerization of the enzyme-NAD+ complex in yeast alcohol dehydrogenase-catalyzed reactions.


1978 ◽  
Vol 68 (1) ◽  
pp. 327 ◽  
Author(s):  
Willem R. Leenstra ◽  
Martin Gouterman ◽  
Alvin L. Kwiram

1993 ◽  
Vol 289 (2) ◽  
pp. 475-480 ◽  
Author(s):  
R de Cristofaro ◽  
B Rocca ◽  
B Bizzi ◽  
R Landolfi

A method derived from the analysis of viscosity effects on the hydrolysis of the amide substrates D-phenylalanylpipecolyl-arginine-p-nitroaniline, tosylglycylprolylarginine-p-nitroanaline and cyclohexylglycylalanylarginine-p-nitroalanine by human alpha-thrombin was developed to dissect the Michaelis-Menten parameters Km and kcat into the individual rate constants of the binding, acylation and deacylation reactions. This method was used to analyse the effect of the C-terminal hirudin (residues 54-65) [hir-(54-65)] domain on the binding and hydrolysis of the three substrates. The results showed that the C-terminal hir-(54-65) fragment affects only the acylation rate, which is increased approx. 1.2-fold for all the substrates. Analysis of the dependence of acylation rate constants on hirudin-fragment concentration, allowed the determination of the equilibrium binding constant of C-terminal hir-(54-65) (Kd approximately 0.7 microM). In addition this peptide was found to competitively inhibit thrombin-fibrinogen interaction with a Ki which is in excellent agreement with the equilibrium constant derived from viscosity experiments. These results demonstrate that binding of hir-(54-65) to the fibrinogen recognition site of thrombin does not affect the equilibrium binding of amide substrates, but induces only a small increase in the acylation rate of the hydrolysis reaction.


Sign in / Sign up

Export Citation Format

Share Document