deep trap
Recently Published Documents


TOTAL DOCUMENTS

210
(FIVE YEARS 36)

H-INDEX

23
(FIVE YEARS 5)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7508
Author(s):  
Jung Wook Lim ◽  
Su Jae Heo ◽  
Min A. Park ◽  
Jieun Kim

Neuromorphic devices have been investigated extensively for technological breakthroughs that could eventually replace conventional semiconductor devices. In contrast to other neuromorphic devices, the device proposed in this paper utilizes deep trap interfaces between the channel layer and the charge-inducing dielectrics (CID). The device was fabricated using in-situ atomic layer deposition (ALD) for the sequential deposition of the CID and oxide semiconductors. Upon the application of a gate bias pulse, an abrupt change in conducting states was observed in the device from the semiconductor to the metal. Additionally, numerous intermediate states could be implemented based on the number of cycles. Furthermore, each state persisted for 10,000 s after the gate pulses were removed, demonstrating excellent synaptic properties of the long-term memory. Moreover, the variation of drain current with cycle number demonstrates the device’s excellent linearity and symmetry for excitatory and inhibitory behaviors when prepared on a glass substrate intended for transparent devices. The results, therefore, suggest that such unique synaptic devices with extremely stable and superior properties could replace conventional semiconducting devices in the future.


2021 ◽  
Author(s):  
H. Mosbahi ◽  
Malek GASSOUMI ◽  
A. Bchetnia ◽  
M.A. Zaidi

Abstract This work investigated the electrical properties in AlGaN/GaN/Si HEMTsgrown by molecular beam epitaxy. The electrical behavior have been investigated using by electric permittivity, modulus formalism and conductance measurements. As has been found from electrical conductance, dispersive behavior is related to barrier inhomogeneity and deep trap in barrier layer. On the other hand, the strain relaxation of charge transport is studied both permittivity and electric modulus formalisms.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Stefan Zeiske ◽  
Oskar J. Sandberg ◽  
Nasim Zarrabi ◽  
Wei Li ◽  
Paul Meredith ◽  
...  

AbstractTrap-assisted recombination caused by localised sub-gap states is one of the most important first-order loss mechanism limiting the power-conversion efficiency of all solar cells. The presence and relevance of trap-assisted recombination in organic photovoltaic devices is still a matter of some considerable ambiguity and debate, hindering the field as it seeks to deliver ever higher efficiencies and ultimately a viable new solar photovoltaic technology. In this work, we show that trap-assisted recombination loss of photocurrent is universally present under operational conditions in a wide variety of organic solar cell materials including the new non-fullerene electron acceptor systems currently breaking all efficiency records. The trap-assisted recombination is found to be induced by states lying 0.35-0.6 eV below the transport edge, acting as deep trap states at light intensities equivalent to 1 sun. Apart from limiting the photocurrent, we show that the associated trap-assisted recombination via these comparatively deep traps is also responsible for ideality factors between 1 and 2, shedding further light on another open and important question as to the fundamental working principles of organic solar cells. Our results also provide insights for avoiding trap-induced losses in related indoor photovoltaic and photodetector applications.


2021 ◽  
Vol 129 (18) ◽  
pp. 185701
Author(s):  
Alexander Y. Polyakov ◽  
Vladimir I. Nikolaev ◽  
Sergey A. Tarelkin ◽  
Alexei I. Pechnikov ◽  
Sergey I. Stepanov ◽  
...  

2021 ◽  
Vol 317 ◽  
pp. 369-376
Author(s):  
Norhana Abdul Halim ◽  
Siti Zulaikha Ngah Demon ◽  
Norli Abdullah ◽  
Nurazlin Ahmad ◽  
Zul Hazrin Zainal Abidin

In this paper, trap levels around the glass transition temperature (Tg) of polymers have been characterized using Thermally Stimulated Current (TSC) technique. Deconvolution on α-peaks of the Tg for PE (-104 °C), plasticized PVC (-35 °C), PMMA (90 °C) and PET (96 °C) were carried out based on the first-order kinetic theory for non-Debye relaxation. Using temperature, T from TSC experimental data, we have successfully separated the α-peaks of the thermoplastic polymers. It is found that the complex curve of α-peaks can composed of four (4) to eight (8) sub peaks. Dominant sub peaks were identified at Tmax = -105 °C, -34 °C, 89 °C and 92 °C for PE, pPVC, PMMA and PET, respectively. These peaks show activation energy, Ea of shallow and deep trap centers ranged from 0.3 eV to 4.6 Ev where they represent the depolarization of localized dipoles and space charges relaxations in the polymers.


2021 ◽  
Author(s):  
Jinggang Lan ◽  
Yo-ichi Yamamoto ◽  
Toshinori Suzuki ◽  
Vladimir Rybkin

<div> <div> <div> <p>The structure of the solvated electron in methanol is less studied but more complicated than the one of the hydrated electron. In this condensed-phase first principles molecular dynamics study we reveal the nature of the recently discovered shallow and deep trap states of the excess electron and suggest a more complex picture including four bound cavity states classified by the number of the hydroxy-groups coordinated to the electron, their binding energy gradually increasing with the OH-coordination. The initial shallow bound states are formed via a transient diffusion mechanism, in a trap-seeking fashion, whereas, deeper bound states are formed via a slower methanol molecules reorientation. Despite apparent similarity of the absorption spectrum of the solvated electron in methanol to that in water, the origin of the absorption maximum is drastically different. The previously assumed model of hydrogenic transitions (s-p etc.) as is the case in water does not hold for methanol. Instead, the main bands arise due to the charge-transfer states, promoting the excess electron to the nearby cavity, naturally abundant in this solvent. We propose an alternative simple model to describe electronic states of the solvated electron in methanol: the double square well.</p> </div> </div> </div>


2021 ◽  
Author(s):  
Jinggang Lan ◽  
Yo-ichi Yamamoto ◽  
Toshinori Suzuki ◽  
Vladimir Rybkin

<div> <div> <div> <p>The structure of the solvated electron in methanol is less studied but more complicated than the one of the hydrated electron. In this condensed-phase first principles molecular dynamics study we reveal the nature of the recently discovered shallow and deep trap states of the excess electron and suggest a more complex picture including four bound cavity states classified by the number of the hydroxy-groups coordinated to the electron, their binding energy gradually increasing with the OH-coordination. The initial shallow bound states are formed via a transient diffusion mechanism, in a trap-seeking fashion, whereas, deeper bound states are formed via a slower methanol molecules reorientation. Despite apparent similarity of the absorption spectrum of the solvated electron in methanol to that in water, the origin of the absorption maximum is drastically different. The previously assumed model of hydrogenic transitions (s-p etc.) as is the case in water does not hold for methanol. Instead, the main bands arise due to the charge-transfer states, promoting the excess electron to the nearby cavity, naturally abundant in this solvent. We propose an alternative simple model to describe electronic states of the solvated electron in methanol: the double square well.</p> </div> </div> </div>


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 302
Author(s):  
Laura Vittadello ◽  
Laurent Guilbert ◽  
Stanislav Fedorenko ◽  
Marco Bazzan

Photoinduced charge transport in lithium niobate for standard illumination, composition and temperature conditions occurs by means of small polaron hopping either on regular or defective lattice sites. Starting from Marcus-Holstein’s theory for polaron hopping frequency we draw a quantitative picture illustrating two underlying microscopic mechanisms besides experimental observations, namely direct trapping and migration-accelerated polaron trapping transport. Our observations will be referred to the typical outcomes of transient light induced absorption measurements, where the kinetics of a polaron population generated by a laser pulse then decaying towards deep trap sites is measured. Our results help to rationalize the observations beyond simple phenomenological models and may serve as a guide to design the material according to the desired specifications.


2021 ◽  
pp. 2002090
Author(s):  
Mingxue Deng ◽  
Qian Liu ◽  
Ying Zhang ◽  
Caiyan Wang ◽  
Xinjun Guo ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Anxin Luo ◽  
Yixin Xu ◽  
Yulong Zhang ◽  
Mi Zhang ◽  
Xiaoqing Zhang ◽  
...  

AbstractThe charge stability of electret materials can directly affect the performance of electret-based devices such as electrostatic energy harvesters. In this paper, a spray-coating method is developed to deposit an electret layer with enhanced charge stability. The long-term stability of a spray-coated electret is investigated for 500 days and shows more stable performance than a spin-coated layer. A second-order linear model that includes both the surface charge and space charge is proposed to analyze the charge decay process of electrets in harsh environments at a high temperature (120 °C) and high humidity (99% RH); this model provides better accuracy than the traditional deep-trap model. To further verify the stability of the spray-coated electret, an electrostatic energy harvester is designed and fabricated with MEMS (micro-electromechanical systems) technology. The electret material can work as both the bonding interface and electret layer during fabrication. A maximum output power of 11.72 μW is harvested from a vibrating source at an acceleration of 28.5 m/s2. When the energy harvester with the spray-coated electret is exposed to a harsh environment (100 °C and 98% RH), an adequate amount of power can still be harvested even after 34 h and 48 h, respectively.


Sign in / Sign up

Export Citation Format

Share Document